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ABSTRACT
In this paper, we investigate the link between machine perception
and human perception for highly/fully automated driving. We com-
pare the classi�cation results of a camera-based frame-by-frame
semantic segmentation model (M������) with a well-established
visual saliency model (H����) on the Cityscapes dataset. The re-
sults show thatM������ classi�es foreground objects better if they
are more salient, indicating a similarity with the human visual sys-
tem. For background objects, the accuracy drops when the saliency
increases, giving evidence for the assumption that M������ has
an implicit concept of saliency.

CCS CONCEPTS
• Computing methodologies → Image segmentation; Interest
point and salient region detections;

KEYWORDS
Semantic Segmentation, Saliency, Automated Driving

ACM Reference Format:
Nico Herbig, Frederik Wiehr, Atanas Poibrenski, Janis Sprenger, and Chris-
tian Müller. 2018. How Machine Perception Relates to Human Percep-
tion: Visual Saliency and Distance in a Frame-by-Frame Semantic Seg-
mentation Task for Highly/Fully Automated Driving. In SEFAIAS’18: SEFA-
IAS’18:IEEE/ACM 1st International Workshop on Software Engineering for AI
in Autonomous Systems, May 28, 2018, Gothenburg, Sweden. ACM, New York,
NY, USA, 5 pages. https://doi.org/10.1145/3194085.3194092

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
SEFAIAS’18, May 28, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s). Publication rights licensed to the
Association for Computing Machinery.
ACM ISBN 978-1-4503-5739-5/18/05. . . $15.00
https://doi.org/10.1145/3194085.3194092

1 INTRODUCTION
Frame-by-frame semantic segmentation is one of the standard tasks
in the context of deep learning for environment perception in
highly/fully automated driving. Given a single frame of a video
source, the task is to determine the semantic target class of each
pixel within this frame. Depending on the dataset, the set of target
classes di�ers. It typically contains: street, vehicle, pedestrian, build-
ing, sidewalk, vegetation, sky, etc. Despite the fact that between-
frame information is neglected and pixel-accurate classi�cation
does not necessarily re�ect the requirements of the application, the
task can be considered a good test bed for the underlying algorithms,
because it is well-de�ned and relatively simple.

In this paper, we relate frame-by-frame semantic segmentation,
M������, to a well-known saliency model motivated by human per-
ception, H����. In particular, we show the dependencies between
M������ and H����, gaining new insights on how to interpret
the segmentation results.

It is important to note that we do not simplify or even modify the
underlying semantic segmentation task. Training and classi�cation
procedures remain the same. Visual saliency is added afterwards
as an additional means for interpreting the results.

In the remainder of this paper, we use autonomous driving and
automated driving as equivalent terms. Moreover, highly automated
driving is associated with Level 3 autonomous driving, while fully
automated driving relates to Levels 4 and 5. Please refer to [7] for
an introduction to the level model of autonomous driving.

2 THE ROLE OF SITUATION AWARENESS
AND VISUAL SALIENCY IN LEVEL 3
TAKE-OVER SCENARIOS

2.1 Take-Over Situations
In Level 3 (and as a fall-back also in Level 4) autonomous driving, so-
called take-over situations are expected to occur, in which the driver
is requested to take over control of the vehicle within a relatively
short period of time. It is beyond the scope of this article to discuss
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(a) Original (b) Saliency

Figure 1: An example saliency map of an image from the Cityscapes dataset [2].

the exact nature of such a take-over situation or the minimal take-
over time. The only fact important to consider here is that the
driver needs to ful�ll a few mental and physical steps between,
say, reading a novel (or whatever tasks she or he is pursuing) and
successfully steering the vehicle in a presumably di�cult driving
situation (otherwise we would assume the car would not have to
initiate take-over in the �rst place). Those steps or phases are (A)
a mental arousal phase, (B) a situation awareness phase, and (C) a
physical preparation phase. Mental arousal refers to the cognitive
activity that is necessary to perceive the take-over requests and
understand their meaning. Physical preparation covers all activities
related to getting ready to take action (including storing away
keyboards, adjusting the seat position, etc.) Phase B is of interest
in this paper – the situation awareness phase.

2.2 Situation Awareness
Among all psychological approaches to situation awareness, Ends-
ley’s model is probably one of the best-known [4]. At its core, the
model is described as: perceiving the elements in the environment,
understanding their meaning, and predicting their status in the
future. It is embedded in a loop of decision-making and acting, in
which the latter a�ects the status of the elements, thus looping
back to the beginning. Intrinsic factors (such as capacity, skills, and
attitudes) as well as extrinsic factors (such as complexity of the
scene) in�uence the loop.

2.3 Visual Saliency
How well (and especially how fast) a human perceives the elements
of the environment depends on their saliency. There are two factors
in�uencing visual attention. The �rst one constitutes the bottom-up
features of the visual environment such as color or orientation of
objects. For example, a red scarf worn on top of a white shirt auto-
matically stands out and attracts our attention. The second factor
is task-dependent, a top-down component that is guided by the
human’s current task, cognitive abilities and experience. A saliency
map is a topographical 2D map that combines the information from
di�erent feature maps to assess the global level of conspicuity of any
location in a scene. Brighter parts within saliency maps are more
salient than darker ones and represent locations that are statistically
viewed more frequently by humans. These automatically generated
maps are frequently used for image compression or image cropping,

where less salient areas can be subject to stronger compressions or
can be cropped without too much loss of information.

In this paper, we use the well established Itti-Koch saliency
model [6]. While this model is not targeted towards the driving do-
main, it assembles the bottom-up visual attention reasonably well
and has been used for a large variety of applications. The algorithm
starts by computing Gaussian pyramids of the input image at nine
spatial scales. For each scale, an intensity feature, red, green, blue,
and yellow color features, and orientation features (by using Ga-
bor �lters) are computed. These are then combined using so-called
center-surround di�erences of the intensity features at di�erent
scales, of the orientation features at di�erent scales and di�erent
angles, as well as combining the complementary color features
for (red, green) and (blue, yellow). The resulting feature maps are
normalized and combined, yielding separate conspicuity maps for
intensity, color and orientation. In a �nal step, these three maps are
added up using equal weights, resulting in a single saliency map
covering all considered bottom-up features (cf. Figure 1). For more
information, please consult the original paper.

In the future, thismodel could be combinedwith a task-dependent
top-down approach to better suit the driving domain. This could
include adding road-speci�c features or using weight modulation to
adapt the importance of the di�erent features included in Itti-Koch
to the driving domain.

3 THE ROLE OF FRAME-BY-FRAME
SEMANTIC SEGMENTATION IN MACHINE
PERCEPTION FOR HAD/FAD

Frame-by-frame semantic segmentation is one of the standard tasks
in the context of deep learning for environment perception in
highly/fully automated driving. Given a single frame of a video
source, the task is to determine the semantic target class of each
pixel within this frame. The whole image is densely separated into
di�erent segments and simultaneously each segment is assigned a
semantic class, thus using conceptual di�erences of objects for the
segmentation task. Since semantic segmentation is directly using
the sensor data (e.g. RGB-camera) its main task in the context of
autonomous driving is the generation of more abstract representa-
tions for high-level processes, for instance object recognition and
scene understanding.
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Figure 2: Performance by Distance Group Relating to Saliency

There are multiple challenges published, consisting of a training
and an evaluation set of densely labeled 2D RGB images display-
ing real street scenes viewed from the perspective of a driving car.
The label information assigns each pixel to a semantic class (e.g.
street, sidewalk, person, car, etc.) thus providing enough data to
train and evaluate a neural network. In this work we are using
the Cityscapes dataset [2] which provides ground-truth labels for
semantic segmentation. This enables us to analyze the results of
semantic segmentation in regard to visual saliency and thus com-
pares a simpli�ed version of human visual perception with a neural
network for segmentation.

3.1 State of the Art Research
The fully-convolutional network [9] is considered the stepping-
stone in deep learning for frame-by-frame semantic segmentation.
All of the state-of-the-art methods developed afterwards are based
on its simple principle. The main breakthrough was to remove fully-
connected layers (in a typical convolutional network architecture)
and replace them with fully-convolutional ones, allowing for the
output of spatial maps instead of classi�cation scores.

In order for semantic segmentation to work well, it should gather
knowledge from multiple spatial resolutions. It is important to
have local �ne-grained information in order to achieve good pixel-
accuracy. On the other hand, global information is crucial as well in
order to resolve ambiguities that occur locally.Multi-scale prediction
is a method that deals with global information and is used in several
state-of-the-art segmentation networks. Some of the current top
performers in semantic segmentation are PSPNet [11] and Deeplab
v3 [1]. They both integrate multi-scale prediction and are based
on the ResNet architecture [5]. PSPNet uses a fully-convolutional

ResNet to extract features from the input image and then a pyramid
parsing module is applied to gather information from di�erent
scales. After that, everything is upsampled and concatenated in
one feature representation, which now has both local and global
information. Deeplab v3 uses spatial pyramid pooling in a similar
fashion to PSPNet in order to capture context at several ranges.

Another way to gather context information is by increasing
the receptive �eld of the convolutional �lters without losing any
resolution. This is done with dilated convolutions which are a gen-
eralization of Kronecker-factored convolutional �lters [12]. The
dilated VGG16 network [10] uses these dilated convolutions and is
the model used for frame-by-frame segmentation in this paper.

Our human-based saliency model computed at di�erent spatial
image scales can provide useful insights on such frame-by-frame
segmentation models in terms of how well these models are gath-
ering both local and global image information.

4 THE DEPENDENCIES BETWEEN VISUAL
SALIENCY AND DISTANCE TO SEMANTIC
SEGMENTATION

The convolutional network serves as a proxy for computer vision;
hence, we are not interested in the actual performance of the model,
but in the relation of computer vision and human visual perception.
Since the segmentation network should identify object distinct
features better if they are salient, we hypothesize that there is a
relation between saliency and segmentation results: the higher
the saliency for a particular pixel is, the better the classi�cation
performance of the segmentation model will be. We designed and
executed an experiment to verify this hypothesis and to further
analyze the behavior of the network.
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Figure 3: Percentages of Pixels for Background and Foreground Classes

4.1 Experiment Description
We trained a dilated VGG16 model [10], that was initialized on the
pre-trained weights from ImageNet [3], on the training set of the
Cityscapes dataset [2] (2975 images). The training was done with
the standard mini-batch stochastic gradient descent with momen-
tum. Since the full images are too big to �t into GPU memory, a
random crop of 628x628 is used. The mini-batch size is set to 12,
the learning rate is 0.0001 and the momentum is 0.99. The training
of the model was done using the Ca�e framework [8] and a Tesla
P100 GPU (16GB). The VGG16 model was evaluated on the same
set and all pixels were grouped into 5 saliency groups. We report
the intersection over union (IoU; see Equation 1) for each semantic
class and saliency group.

IoU =
true positive

true positive + false positive + false negative
(1)

This performance measure was chosen because it takes into ac-
count both the false alarms and the missed values of each class,
giving us more information on what is happening compared to a
simple accuracy measure. It has also become a standard for mea-
suring the performance of semantic segmentation algorithms.

In addition, we calculate the saliency map on the evaluation set
of Cityscapes (500 images) based on the Itti-Koch model [6] (cf.
Subsection 2.3). As stated above, this model only considers bottom-
up saliency and is not speci�c to the driving domain. However, as it
is widely used and resembles the human visual system, we consider
it a good starting point for relating segmentation performance to
visual saliency. Thus, we get a saliency value between 0 and 255
for every single pixel, which we can relate to its IoU.

4.2 Results
The result of the experiment can be seen in Figures 2a and 2b. We
are not interested in the actual magnitude of performance accuracy,
but in the relation and general trend in regard to saliency. The
amount of pixels belonging to each class drops with an increasing

saliency, thus the results for a high saliency have to be observed
with caution. The percentage of pixels for each class belonging to
the di�erent saliency groups are shown in Figures 3a and 3b.

The results are separated into typical background classes (e.g.
road, building, vegetation) and typical foreground classes (e.g. tra�c
light, person, car). An analysis of variance (ANOVA) was conducted
on the factors saliency and distance group (background, foreground)
on the mean intersection over union for each distance group. The
descriptive statistics can be seen in Figure 4. The assumption of
sphericity was violated; hence, we applied Greenhouse-Geisser cor-
rection, but we report the uncorrected degrees of freedom, in order
to increase the readability. There was no main e�ect for saliency
(F(4, 14) = 1.068, p = 0.343) and no main e�ect of distance group
(F(1,17) = 0.214, p = 0.65) but there was a signi�cant interaction of
saliency and distance group (F(4,14) = 18.178, p < 0.001).

4.3 Discussion
As expected, the main e�ect of distance group was not signi�cant,
meaning there is no statistical di�erence between the segmenta-
tion performance of background and foreground objects over all
saliency groups. The main e�ect of saliency is not signi�cant ei-
ther, implying there is no statistical di�erence between the saliency
groups over all semantic classes (independent of foreground and
background). However, the interaction is signi�cant, thus showing
with statistical certainty that the performance of the segmentation
model for background classes decreases with increasing saliency
and the performance for foreground classes increases with increas-
ing saliency.

In the case of foreground objects, this means being more distinct
from the background and surrounding objects (being more salient)
is bene�cial for the segmentation. Hence, for the foreground classes,
our results support the assumption that similar to the human visual
system, the segmentation algorithm can identify salient pixels more
easily.

Even more interesting are the results for background classes,
where the performance drops with increasing saliency. A large
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Figure 4: Mean intersection over union (IoU) for all background and
foreground classes depending on the saliency. Error bars denote one
standard error (SE).

proportion of pixels belonging to these background classes have
a very low saliency, whereas foreground objects tend to have a
larger portion of more salient pixels. A more in-depth analysis of
the confusion matrices shows that background classes are not only
confused with foreground classes (e.g. fence being confused with
pole), but also with other background classes (e.g. sidewalk with
street and vice versa).

The results lead us to the interpretation that the model has an
implicit concept of saliency. By de�nition, foreground objects are
more salient than background objects. Thus less salient features
should be attributed to background classes and hence increase the
performance, whereas more salient features should be attributed to
foreground classes and hence increase the performance. Our results
support this interpretation with statistical certainty.

However, there are two cases where this interpretation cannot
be applied. First of all, the performance of the bicycle class drops,
even though we consider it to be a foreground object. Based on our
results there is no explanation for this behavior, and it will require
further experiments. The second case is the performance drop for
the train class, which can be mostly attributed to a confusion with
buildings. This is an indication that less salient features of trains
and buildings seem to be very similar.

One should note that this experiment is subject to the following
limitations: (i) we consider only the VGG16 architecture for seman-
tic segmentation, (ii) and only the Itti-Koch model [6] for saliency
estimation, and do not analyze the transferability of the results.
However, since VGG16 is a standard model which is referred to
by many state-of-the-art segmentation models, and many saliency
models are extensions to the one used here, we believe this to be
a good choice for our initial analysis. Nevertheless, one should
consider more sophisticated models in the future.

5 CONCLUSION
To conclude, there seems to be a relation between object saliency
and the classi�cation performance of a segmentation model. Apart
from a few exceptions, foreground objects seem to be classi�ed
more accurately if they are more salient, while the opposite holds
for background objects. This leads to four questions which we
want to address in the future: (1) Can results of similar or even
better interpretability be produced with a di�erent saliency model,
e.g. one focusing more strongly on the driving domain? (2) Does
the classi�cation accuracy improve when the saliency of an image
is provided additionally to the image itself? The hypothesis here
would be that it can learn faster based on the provided prior knowl-
edge. (3) How well do saliency models (potentially incorporating
top-down features) capture dangerous tra�c situations? We expect
e.g. a deer or a child running across the street to be easily detected
by even simple saliency models. Could this information, potentially
in combination with improved segmentation accuracy (see (2)), be
used to develop better perception systems that allow analysis even
of complex tra�c situations? (4) Can we use saliency estimation to
quantify the uncertainty of a semantic segmentation model?
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