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Abstract In this paper, we develop a model that uses a wide range of physiolog-
ical and behavioral sensor data to estimate perceived cognitive load (CL) during
post-editing (PE) of machine translated (MT) text. By predicting the subjectively
reported perceived CL, we aim to quantify the extent of demands placed on the
mental resources available during PE. This could for example be used to better
capture the usefulness of MT proposals for PE, including the mental effort re-
quired, in contrast to the mere closeness to a reference perspective that current
MT evaluation focuses on. We compare the effectiveness of our physiological and
behavioral features individually and in combination with each other and with the
more traditional text and time features relevant to the task. Many of the phys-
iological and behavioral features have not previously been applied to PE. Based
on the data gathered from 10 participants, we show that our multi-modal mea-
surement approach outperforms all baseline measures in terms of predicting the
perceived level of CL as measured by a psychological scale. Combinations of eye-,
skin-, and heart-based indicators enhance the results over each individual measure.
Additionally, adding PE time improves the regression results further. An investiga-
tion of correlations between the best performing features, including sensor features
previously unexplored in PE, and the corresponding subjective ratings indicates
that the multi-modal approach takes advantage of several weakly to moderately
correlated features to combine them into a stronger model.
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1 Introduction

Even though machine translation (MT) systems are improving rapidly, the re-
sulting translations currently still require manual post-editing (PE) to become
adequate for many tasks at hand (e.g. for publishing). While current MT systems
are mostly evaluated in terms of closeness to an independently provided reference
translation, this quality perspective neglects PE costs related to the way in which
post-editors work with MT output. Enhancing this process of PE can for example
be accomplished by improving computer-aided translation (CAT) tools to better
support PE, but also by shifting the optimization goal for MT output towards
being useful for the PE task. To measure the usefulness of MT for PE, approaches
recording PE time and effort (Guerberof 2009; Zampieri and Vela 2014), quan-
tifying in seconds and keystroke logs the difference between MT output and a
human-acceptable translation, have been proposed. We argue that it is not only
the amount of PE necessary or the PE time that should be considered, but the
actual cognitive load (CL) perceived by the post-editor. Here, we see CL as “a
variable that attempts to quantify the extent of demands placed by a task on
the mental resources we have at our disposal to process information” (Chen et al.
2016). To frame it within the model of PE effort by Krings (2001), who divided
effort into temporal, cognitive, and technical aspects, we propose to focus on the
cognitive PE effort.

1.1 Motivation

Especially the PE task has the potential of inducing high CL on the translator: it
involves continuous scanning of texts, including source, the incrementally evolving
final translation output and possible error-prone MT output for mistakes, (sub-)
strings that can be reused, text that has been translated, text that still needs to
be translated, etc. When PE is required, we should therefore optimize for a low
perceived CL during PE, and not only focus on MT quality in terms of automatic
measures or time to post-edit. While CL and MT quality are interrelated, they
cannot be considered equal, a simplification often made in the translation domain
(cf. Section 2.2). As an example, a long translation with a lot of string overlap with
a reference may obtain a high automatic or even subjective evaluation score, but
turn out to be difficult to PE and therefore cause high CL. A further difference is
that CL may vary with individual post-editor, and this may even to some extent
be independent from MT quality (e.g. the number of similar mistakes that have
been corrected in the past may impact perceived CL, while the quality remains
the same). Due to such examples, it has been argued that CL is a more decisive
indicator of the overall effort expended by post-editors (Vieira 2016).

In contrast to almost all related research in the translation domain, we focus on
CL as defined in psychology, where it has been well researched and is based on the
assumption of a limited available working memory on which load is imposed during
cognitive tasks (Chen et al. 2016; Paas et al. 2003; Paas and Van Merriënboer 1994;
Sweller 1988). A key finding is that it is important to avoid too high or too low CL
to keep subjects motivated and to reduce stress, exhaustion and fatigue. It is also
important to note that CL significantly differs from performance, since humans
have the ability to temporarily increase their effort in order to keep performance
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high when a task becomes more demanding; this, however, comes at the cost of
additional strain (Hockey 1997).

Such factors like stress and fatigue are currently not considered in MT quality
measures but can influence the outcome and cost of PE in terms of required time
or occurring errors. Being able to robustly measure CL during PE would enable
CAT tools to intervene when high loads are detected, e.g. by suggesting breaks, or
providing alternative translations, thereby avoiding overload of post-editors. The
automatic capture of CL without interfering in the PE process would also enable
the creation of large datasets of CL scores for (source, MT, PE) tuples, that could
be used to optimize MT systems to produce output inducing lower CL on the
post-editors. Furthermore, translators could better balance jobs inducing different
effort, or even be paid based not only on time or words, but also on CL. To provide
first steps towards these goals, in this paper we are concerned with the question
of how to actually estimate CL during PE. Approaches to measure CL have been
proposed in the past; however, to date there is not much literature that directly
focuses on estimating CL during PE.

1.2 Contributions

Our contributions are four-fold: (1) we present an approach based on physiological
and behavioral sensor data from a number of modalities and combine them in
various ways with each other and with traditional text- and time-based features
relevant to the task to cover a number of modalities at the same time. Several of
these implemented features have not previously been explored in the translation
domain. (2) We investigate how well predictive models based on feature combina-
tions from these modalities can predict perceived CL, as measured by subjective
ratings on a well established CL scale from psychology (Paas and Van Merriënboer
1994). The different modalities and their combinations are then compared in terms
of regression performance. (3) We analyze correlations between the best perform-
ing features, including some of the unexplored features within the PE domain, and
the corresponding subjective ratings to better understand what benefits a multi-
modal approach has. (4) We publicly release the data used for our analyses, which
comprises recordings from a large variety of physiological and behavioral sensors
during a PE experiment with 10 translation master’s students. The results of our
analyses indicate that combining multiple modalities helps in detecting CL.

2 Related Work

This section reviews the most important approaches for measuring CL within the
translation domain and other domains and discusses the challenges imposed by
the PE domain.

2.1 CL measurements in other domains

Cognitive load theory (Paas and Van Merriënboer 1994; Sweller et al. 1998) comes
from psychology and is concerned with an efficient use of people’s limited cog-
nitive resources to apply acquired knowledge and skills to new situations (Paas
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et al. 2003). Apart from psychology, CL measurement has especially been studied
in the field of human-computer interaction (HCI). The approaches can be roughly
divided into four categories: subjective measures, performance measures, physio-
logical measures and behavioral measures. Subjective measures are based on the
assumption that subjects can self-assess and report their cognitive processes af-
ter performing a task (Paas and Van Merriënboer 1994). Several scales exist, and
introspection is often used as a ground truth to evaluate how well CL can be
assessed by other means, such as physiological measurements. Performance mea-
sures assume that when working memory capacity is overloaded, a performance
drop occurs due to the increase in overall CL (Chen et al. 2016). However, by in-
creasing their efforts, humans can compensate for the overload and maintain their
performance over a period of time, although this can lead to additional strain and
fatigue (Hockey 1997).

A lot of research has been done on physiological measurements, which assume
that human cognitive processes can be seen in the human physiology (Kramer
1991). Eye-tracking is frequently used for physiological CL measurements: the
pupil diameter increases with higher CL (Iqbal et al. 2004; O’Brien 2006a), the
frequency of rapid dilations changes (Demberg and Sayeed 2016), and the blink
behavior adapts (Van Orden et al. 2001). Furthermore, Chen and Epps (2013) as
well as Stuyven et al. (2000) showed that fixations and saccades can also be used
for CL predictions. Apart from the eyes, the skin also provides information about
the user’s cognitive state: galvanic skin response (GSR) can be used to deter-
mine whether a user feels stressed (Villarejo et al. 2012) and provides information
about the CL (Shi et al. 2007). Remote measurements of the skin temperature
have also been effective (Yamakoshi et al. 2008). Further commonly used indica-
tors rely on the cardiovascular system: blood pressure (Yamakoshi et al. 2008),
heart rate (Mulder 1992), and especially heart rate variability (HRV) (Rowe et al.
1998) have been shown to correlate with CL. Other physiological measures include
respiration (Chanel et al. 2008) and brain activity (Hosseini and Khalilzadeh 2010;
Solovey et al. 2012). Combinations of such brain activity measures, eye based mea-
sures, and subjective measures have also been explored in the context of subtitle
processing in movies (Kruger and Doherty 2016; Kruger et al. 2018). Furthermore,
the recent improvements in computer vision using deep learning allow automatic
extraction of emotions from videos (Kahou et al. 2016). However, simple features
such as the head pose have also been shown to correlate to CL when learning (As-
teriadis et al. 2009). Last, behavioral measures can be extracted from user activity
while performing a task. Especially interesting in the context of PE are mouse
and keyboard input-based features, which were shown to correlate to CL (Arshad
et al. 2013).

2.2 CL measurements for translation

Compared to the HCI domain, only a few, albeit seminal, publications relevant
to the cognitive dimension of modeling PE exist. Krings (2001) utilized think-
aloud protocols to capture cognitive effort; however, as pointed out by O’Brien
(2005), post-editors constantly reporting what they are doing (a) slows down the
process and (b) changes the process itself. O’Brien (2005) explored correlating
pauses in typing behavior to potentially difficult source text features. In a follow-up
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analysis (O’Brien 2006b) she concluded that “while pauses provide some indication
of cognitive processing, supplementary methods are required”. Lacruz et al. (2012)
and Lacruz and Shreve (2014) built upon this work, but instead of examining long
pauses, they analyzed clusters of shorter pauses. Their metrics called Average
Pause Ratio (APR) and Pause to Word Ratio (PWR) could be correlated to
technical effort (the required mouse and keyboard actions), arguing that “it is
likely that in many situations technical effort and cognitive effort will be related”.
Mellinger (2014) focused on cognitive effort when using translation memories (TM)
by correlating keystroke logs and pause metrics to translation quality ratings. One
should note here that while such MT quality measures are most likely related
to perceived CL, they cannot be considered equal: consider e.g. very bad MT
proposals that are still very easy to PE due to the simplicity of the segments, or
the contrary, a very high MT quality where spotting the error can remain difficult
and induce a high CL.

The question of which sentence features affect PE effort has been researched
as well. Tatsumi (2009) analyzed the relation between automatic evaluation scores
and PE speed and found that especially the source sentence length and structure
yield to longer PE times. Temnikova (2010) extended an existing MT error classi-
fication by ranking the error types in terms of cognitive effort based on a cognitive
model of reading, working memory theory, and written error detection studies.
However, an analysis of which CL these errors actually induce on editors was not
performed. Koponen (2012) compared edit distances to human judgments specify-
ing the amount of PE effort that would be necessary to achieve a useful translation.
Similar scales were also proposed by Specia et al. (2010) and Callison-Burch et al.
(2010), measuring quality/expected percentage that needs editing and implicitly
assuming this to be equal to CL. Koponen et al. (2012) “suggest post-editing time
as a way to assess some of the cognitive effort involved in post-editing”. Lacruz
and Shreve (2014) correlate different error types, classified into mechanical and
transfer errors, to PWR, HTER (Snover et al. 2006, 2009), and user ratings of MT
quality. Similarly, the work of Popovic et al. (2014) shows that “lexical and word
order edit operations require most cognitive effort, lexical errors require most time,
while removing additions has low impact on both quality and on time”; however,
they simply considered human quality level scores as cognitive effort. To summa-
rize, these works provide insight into which features of a MT output lead to longer
PE times or worse subjective quality ratings; however, a direct link to CL in the
psychological sense was not shown, but only assumed to exist.

Eye-tracking as a means to capture CL during PE has also been investigated:
O’Brien (2006a) proposed pupil dilation as a measure of CL and focused on corre-
lations with different match types retrieved from a TM. Doherty et al. (2010) also
explored eye-tracking by measuring different features while reading MT output.
They found that gaze time and fixation count correlate with MT quality; how-
ever, fixation duration and pupil dilation were less reliable. Moorkens et al. (2015)
correlated ratings of expected PE effort with temporal, technical and cognitive
effort, in terms of time, TER, and fixation counts and durations, respectively. In-
terestingly, the correlations between eye-tracking data and predicted effort were
either very weak or weak, suggesting that human predictions of PE effort can-
not be considered completely reliable. In contrast to these quality-, time-, and
expectation-based measures, Vieira (2014) uses a psychology-motivated definition
of CL. He linked average fixation duration, fixation counts, and a self-report scale
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measuring CL which is frequently used in psychology (Paas and Van Merriënboer
1994) to segments expected to pose different levels of translation difficulty and
their corresponding Meteor (Lavie and Agarwal 2007) ratings. In a follow-up work,
Vieira (2016) analyzes how all of the above measures, as well as pause metrics and
editing time, relate to each other in a multivariate analysis. He found correlations
between all measures; however, a principal component analysis showed that they
cluster in different ways. While these works by Vieira (2014, 2016) are probably
the most closely related studies, our approach differs in two important regards: (i)
instead of just exploring eye, pause, and time measures, we integrate many more
CL measurement methods in a multi-modal fashion that are previously unexplored
in the translation domain, and (ii) we analyze how well the self-report CL ratings
can be predicted based on these measurements to investigate the feasibility of
automatically gathering CL values for segments through different sensors.

2.3 Challenges of translation/PE domain

The translation/PE domain poses a few challenges compared to normal CL studies.
First, the task difficulty is of a subjective nature, as it depends on the transla-
tor’s experience with similar texts, vocabulary, etc.; hence, the translations are
not objectively hard or easy. These inter-translator differences could, however, be
captured well by subjective measures. Performance measures, on the other hand,
besides the problem of compensatory effects (Hockey 1997) discussed above, have
the inherent problem that defining performance is by itself not easy in this do-
main, due to the complex inter-relation of speed and quality. Also, the frequently
used dual-task design is impractical, since the focus should remain on the PE task
without distraction. Second, the task of PE is very restricted: the translator does
not move a lot, is focused on the screen, does not speak, etc. Thus, behavioral
measures are limited to mouse and keyboard inputs. Last, any sensors should not
hinder the process or make the translator feel uncomfortable, which can be an
issue with two-finger GSR sensors, or any EEG sensors. Therefore, physiological
measures should focus on wearables and cameras.

3 Towards a robust CL measure for PE

As stated in the introduction, we believe that the CL perceived by translators
during PE should be considered more closely, since MT output nowadays often
requires PE and only considering the number of changes needed may not be an
accurate measure of the effort involved (Koponen 2016). By focusing on the CL
during PE, we aim for improved motivation to work and avoidance of boredom,
exhaustion and stress. Adding this CL-based perspective on PE of MT to the com-
monly used but arguably oversimplifying BLEU (Papineni et al. 2002) perspective
on MT quality should lead to a better approximation of actual PE cost.

Thus, we need a method to robustly measure CL in PE. The research literature
provides a lot of studies in other domains (cf. Section 2.1); however, the question
remains which of the related approaches are applicable here. Within the translation
domain (cf. Section 2.2) only a few of these approaches have been tested and
the focus was mostly not on CL but on perceived MT quality. To test which
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measuring approaches can actually reflect different levels of CL in PE, we gather
data, which can be combined in a multi-modal fashion, from a variety of sensors
during PE. As a ground truth, we use the subjective ratings of perceived CL per
segment of each individual post-editor to also capture inter-translator differences.
A combination of a set of the gathered sensor data is then correlated to these
subjective ratings by regression analysis predicting the rating from the data. The
goal is to be able to automatically infer the CL from the raw sensor data during
PE to avoid interruptions by asking for these ratings. Ideally, this should work
using as few and as commonly used sensors as possible to prevent overhead and
make it more feasible in practice. In this section, we present the steps we have
taken so far for building a robust CL measure for PE.

To assess data from multiple modalities during PE, we implemented a frame-
work combining several sensors that show correlations with CL in other domains,
as well as other sensors that we considered interesting possible indicators of CL in
PE. A node.js server, running on the same machine as the PE is done on, retrieves
data via web sockets and stores it to a database. The system is event-based; thus,
whenever a sensor acquires data, it is sent as a JSON event to the server. To calcu-
late higher-level features based on a combination of raw data during runtime, it is
also possible to subscribe to specific events, process them, and send the resulting
high-level feature back to the server.

Our most basic sensor is a keylogger storing all keyboard and mouse input
during PE. The higher-level pause features APR and PWR by Lacruz et al. (2012)
are automatically calculated from the keyboard events. Our software also listens to
the shortcut to switch to the next segment within the CAT tool and intervenes by
showing a pop-up asking for a subjective CL rating. As a subjective rating scale for
CL, we decided to use the one proposed by Paas and Van Merriënboer (1994), since
it focuses on CL and not on quality, has been widely used and verified in many
application areas, can be answered quickly as it contains only a single question
(in contrast to NASA-TLX (Hart and Staveland 1988)), and allows ratings on a
9-point scale, thereby offering a sufficiently wide range to select from. The single
question is ‘In solving or studying the preceding problem I invested’ with answer
possibilities from ‘very, very low mental effort’ to ‘very, very high mental effort’.

We integrate the remote Tobii eye tracker 4C, since it is cheap, offers high-
quality data and can therefore be considered as a candidate for real-world usage.
With it, we record the raw gaze data, detect the amount of blinking (Blinks),
and compute the average fixation amount (Fixavg) and average saccade dura-
tions (SaccDuravg), all of which have been shown to be indicators of CL. Further-
more, we calculate the probability of visual search (Goldberg and Kotval 1999)
(SearchProbavg), which was used to find user interface flaws, hoping that it might
also help determine CL. We did not use the pupil diameter, because it requires
more expensive hardware, has a long latency, and is less feasible to measure under
changing illumination.

For cardiovascular measures, we integrate a Polar H7 heart belt communicating
with the computer via Bluetooth Low Energy. It measures the heart rate and the
RR interval, which is the length between two successive Rs (basically the peaks) in
the ECG signal. Based on this, we calculate the often-used CL and stress measures
of heart rate variability (Rowe et al. 1998), in particular the root mean square of
successive RR interval differences (RMSSD) and the standard deviation of NN
intervals (SDNN). Since the SDNN uses NN intervals, which normalize across the
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RR intervals and thereby smooth abnormal values, we expect it to be influenced to
a lesser degree by outliers, but at the same time to react more slowly to changes
in HRV. As with the other features, the calculated values are normalized per
participant and averaged per segment (RMSSDavg, SDNNavg). This normalization
is achieved by projecting all values of a participant to the interval [0,1].

We integrate the Microsoft Band v2, a small bracelet offering a variety of
sensors, including a galvanic skin response (GSR) sensor. As more and more people
wear such devices in their daily lives, we argue that it could also be accessible
during PE in the near future. As described in detail in Chen et al. (2016), three
features are calculated from the raw data: the accumulated and average GSR per
segment after normalizing per participant (GSRacc, GSRavg), and the equivalent
to GSRavg in the frequency domain (FreqGSRavg). Similar to Chen et al. (2016),
normalization is achieved here by dividing each value of the participant by the
participant’s average GSR value.

Two web-cams are integrated into the system. The first one simply records
images at a fixed interval. These are then sent to an emotion recognition API like
Microsoft Cognitive Service1, returning a simple JSON format with the likelihood
of each of the basic emotions based on a trained neural network. The basic emotion
values are normalized per participant and the mean is calculated per segment
(EmotionNameavg). The second web-cam is used to calculate the eye aspect ratio,
which indicates the openness of the lids. For this, we re-implemented the work of
Soukupova and Cech (2016) and average the values per segment (EARavg). Even
though both web-cam based features have not been shown to be an indicator of CL
in the literature, they are included because intuitively a link might exist and the
simplicity of using web-cams would make the CL measurement easily applicable
in practice.

Last, a Kinect v2 captures the body posture. We hypothesize that post-editors
come closer to the screen for hard-to-edit translations. The distance to the head
is normalized per participant and the mean distance per segment is calculated
(HeadDistavg).

Apart from the sensors, we need to generate state-of-the-art translations for
our experiments that contain realistic error types. For this we adapted the ConvS2S
neural machine translation (NMT) system (Gehring et al. 2017) trained on English-
German parallel data from the WMT 2017 translation task. We use an ensemble
of four expert ConvS2S NMT models with different random weight initializations.
To mitigate the label bias problem (Lafferty et al. 2001), each model was trained
separately to decode from left-to-right and right-to-left, i.e., we achieve a left-to-
right and right-to-left decoding symmetry for MT. Finally, we re-score hypotheses
by interpolating left-to-right and right-to-left scores with uniform weights. Before
training our NMT model, we preprocessed words into subword units (Sennrich
et al. 2016). We followed the best hyper-parameter settings as described in Gehring
et al. (2017). During translation (i.e., at the decoding time) we set the beam size
to 5. The overall performance achieved by our NMT system is 29.5 in BLEU and
60.1 in TER on the WMT 2017 test set. Compared to the best system in WMT-
2017 (Sennrich et al. 2017), ConvS2S achieves +1.2 BLEU and -1.1 TER absolute
points. These state-of-the-art results should therefore properly reflect the types of
errors currently occurring in MT outputs.

1 https://azure.microsoft.com/services/cognitive-services
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4 Experiment

We conducted an experiment to see if and how we can automatically determine
the CL perceived during PE and whether our multi-modal approach facilitates the
CL measurement process2. All data used throughout this experiment is publicly
available at http://mmpe.dfki.de/data/MTJournal2019.

4.1 Text selection

Similar to Vieira (2016), we used a subset of the WMT 2017 news translation task
test set as texts for this study. After using our NMT system, we extracted 300
sentences and their translations, 100 each within different TER score intervals3.
All segments had a length of ≤ 35 words. Out of these 300 sentences, we extracted
60 segments based on error rules to ensure different difficulties are represented
in this set. For this, we categorized the errors contained as being either errors
of lexical choice, containing mistranslated words or errors in fluency, or errors in
word order. By selecting sentences containing these error types and combinations
thereof, we hoped to induce different levels of CL on the participants.

To further reduce the amount of segments and to ensure that these actually can
cause different levels of CL on the participants, we performed a pre-study (with
counterbalanced segment order). Two German natives with a similar English skill
level, as both are in the same translation science master’s program, participated
and translated the 60 segments. As described above, a pop-up appeared after
each segment asking for a subjective CL rating. We used the resulting 2 times 60
segment ratings to pick 30 for the final study. For this selection, we filtered out
segments with disagreement >3 on the 9-point Likert scale, meaning that they
had at least a similar judgment. To pick 30 sentences, the remaining sentences
were ordered by average rating, and we removed multiple segments with equal
average ratings to achieve an equal rating spread. The hope was that this well-
distributed set of CL perceptions among the participants of this pre-study leads to
transferable ratings in the final study. Note however, that we did not use the pre-
study ratings as the CL labels for the following actual study, but only to perform
this pre-selection of segments. In the main study we again ask the participants
for CL ratings, and use their individual ratings for the analysis to capture inter-
participant differences.

All participants in the final study used these same 30 segments; however, the
order is randomized to avoid ordering effects. While using WMT data, which con-
sists of independent segments instead of complete texts, prevents us from analyzing
the effects of textual (i.e. cross-sentential) coherence and cohesion on CL, it allows
us to perform this randomization of segment order which would not make sense
with a complete text. Since each participant receives the same segments in a differ-
ent order, potential effects such as feeling tired towards the end of the experiment
do not always affect the same segments and therefore balance out.

2 The study was approved by the university’s ethical review board and the data protection
officer.

3 As TER intervals we used [35-50], [60-70], and [80-95].

http://mmpe.dfki.de/data/MTJournal2019
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4.2 Apparatus

For the study, the post-editor is equipped with a Microsoft Band v2 on her right
wrist, the heart belt on her chest, and an eye tracker, as well as two web-cams
and a Microsoft Kinect v2 camera facing her. As input possibilities, a standard
keyboard and mouse are attached, and a 24-inch monitor displays the SDL Trados
Studio 2017 translation environment. We chose Trados for this study as it is by
far the most used CAT tool in professional applications.

4.3 Participants

The experiment participants were 10 native German speakers enrolled in the trans-
lation master’s degree program, who had already attended a CAT tools class where
they had completed the SDL certification program including practice sessions.
From that class, all of them were familiar with MT concepts and PE. Overall, 7
female and 3 male paid students, aged 22 to 32 (average, 25.9), participated.

Prior to the actual experiment, the participants were asked to fill out a data
protection form and a basic questionnaire gathering demographics as well as lan-
guage skills and translation/PE experience. Furthermore, they were given written
instructions explaining that they should (1) post-edit the proposed translations
and not translate from scratch, and (2) focus on grammatical and semantic cor-
rectness while avoiding unnecessary editing. Concrete time limits were not stated.
The reason for clearly specifying how detailed the corrections should be was to en-
sure a similar PE process across participants; other specifications would also have
been valid for such an experiment. Before starting the actual PE process, they
were given time to familiarize themselves with the environment, e.g. to adjust the
chair and adapt the Trados View settings.

4.4 Subjective CL Ratings

All 9 CL ratings were used during the experiment; however, 89.7% of the ratings
were within the range 3 to 7 (inclusive) while the extreme cases were only rarely
chosen (see Figure 1 for the rating distribution). We also observe rating differences
between post-editors, with an average standard deviation across segments of 1.3
(minimum 0.8, maximum 2.1). Note that we use these individual CL ratings for
the remaining analyses to also capture the differences in CL perceptions between
participants. A reason for the non-uniform, rather normal rating distribution could
be the strong wording chosen by the authors of the scale we used to assess per-
ceived CL (Paas and Van Merriënboer 1994): ‘very, very high/low mental effort’
is something that we believe users simply do not identify themselves with often.
Even though we invested work in finding segments that we expected to induce
very, very low or high mental effort through the pre-study, the inter-personal dif-
ferences seem to simply be too high to ensure this. These inter-personal rating
differences also show why CL and the BLEU perspective of MT quality cannot be
considered equal, since the latter is an objective measure, while perceived CL is an
inherently subjective variable and depends on how individuals cope with variation
in the demands of a task (Vieira 2016).
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Fig. 1: Segment distribution across subjective CL scale

4.5 Evaluation Method

Based on these subjective ratings and the sensor data corresponding to these
ratings, we conduct an analysis consisting of two parts. First, we investigate how
well the CL perceived by the individual participant can be predicted from different
modalities and whether a combination of modalities improves the accuracy (cf.
Section 4.6). Second, we look at the concrete features that performed well in this
first stage and analyze their correlations with subjectively measured CL. This
second stage provides further insights into reasons for and against using multi-
modality (cf. Section 4.7).

For both analyses, we designed four categories of feature sets, which are com-
pared against each other: (1) time-based features, (2) text-based features, (3) sen-
sor -based features, and (4) a combination of the previous three.

Here, the time features are the post-editing time (PeTime) or the length-
normalized post-editing time (LnPeTime); the text features consist of smoothed
BLEU, HBLEU (Lin and Och 2004), TER, HTER (Snover et al. 2009), and sen-
tence length (SL), as well as all combinations thereof. Note that the difference
between the non-H- and H-based measures lies in the choice of the reference trans-
lation and hypothesis. BLEU and TER take the MT output as hypothesis and the
independently provided human translation as reference translation and calculate
the amount of necessary edits to transform the hypothesis into the reference, while
HBLEU and HTER perform the same calculation, but this time between the hy-
pothesis translation (the MT output) and the post-edited translation. For the
sensor features, we analyze the different features that were engineered on the raw
sensor data (see Section 3). The modalities heart, eyes, skin, keyboard, body pos-
ture, and emotions are evaluated individually and combined. For the combinations,
we combine these sensor combinations with the time and text-based features.
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4.6 Multi-Modal CL Detection – Regression Analysis

The goal of this stage is to learn a function that best fits the implemented time,
text, sensor, and combined features to the CL as reported by each participant
on the subjective rating scale after each segment; thus, the output space is 1
to 9. We consider each segment of each participant an individual sample with
the corresponding subjective rating as a label. Please note that neither a manual
annotation of the segments nor an average CL rating across participants is used
here, because we focus on the CL perceived by each individual and not on any
general measure of quality. Apart from comparing the different regression models
against each other, we also compare each model to two simple baselines: (1) always
predicting the mean subjective rating (SubjCLavg ), and (2), always predicting the
median subjective rating (SubjCLmedian).

Since different features and combinations of features require different types
of functions to best approximate them locally (e.g. not all of them show linear,
polynomial, or radial relations), we train not only one, but several regression al-
gorithms making different assumptions about the underlying function space: a
support-vector regressor (SVR) with a radial basis function kernel, and linear
models with different regularizers, namely a stochastic gradient descent regres-
sor (SGD), a Lasso model (Lasso), an elastic net (ENet), and a Ridge regressor
(Ridge), as well as a non-linear random forest regressor (RF), all provided in the
scikit-learn library4 using the default parameters and feature normalization. In
this way, for each feature and group of features we obtain locally optimal results
before comparing them and drawing conclusions on the usefulness of the features
involved. While this approach might miss some ideal hyper-parameter combina-
tion, it offers a reasonably wide range of function spaces to choose from and,
furthermore, we did not want our results to be biased and possibly be distorted
by the use and limitations of a single classifier (and with it the class of functions
that can be learned).

Please note that the rating scale used (Paas and Van Merriënboer 1994) is
ordinal; however, the outputs of the regressors can be continuous. The reason is
that we explicitly decided to use the scale as it was designed and verified without
any alterations, but did not see value in forcing the models to output ordinals
because their target value, CL, spans a continuous space. To avoid over-fitting,
all regression functions use regularization or averaging, and we perform cross-
validation. Missing data values for features are replaced by the mean of the feature
values across all participants and segments.

We report the results of the individual features, of combining features within
a modality, and of combining features across modalities. Feature combination is
always achieved using simple vector concatenation. Whenever the space of possible
feature combinations becomes too large, 1000 samples of random feature combi-
nations of a maximum of 5 and a maximum 10 features per combination are used
instead of all possible combinations. For the sensor and combined feature sets, we
ensure that features of different modalities are combined: for the sensor features,
features of multiple sensor modalities are mixed, and for the combined sets, we
ensure that at least one feature of time or text is combined with one or multiple
sensor -based features.

4 http://scikit-learn.org/
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For all of these feature combinations, we train each of the above regressors us-
ing a 10-fold stratified cross-validation, which also considers the inbalanced rating
distribution. For each regressor, the average test mean square error (MSE) is com-
puted across the 10 folds. This average score is then compared across regressors as
it is a good measure for our actual goal: predicting the CL as well as possible. We
choose the MSE as the main metric, since the error squaring strongly penalizes
large errors, which are particularly undesirable for our goal.

For each reported model, we also perform a 5 by 2 cross-validation which we
use to statistically compare the different models. This method has been suggested
by Dietterich (1998) as it ensures that each sample only occurs in the train or test
dataset for each estimation of model skill, thereby reducing inter-dependencies.

Since we expect that more information helps predict perceived CL, we hypoth-
esize that combinations perform best, followed by sensor -, then text-, and last,
time-based features.

4.6.1 Results

The regression results are presented in Table 1. It is divided into the five categories
baselines, time, text, sensor and combined features. First of all, one should note
that the results for 10-fold and 5 by 2-fold cross-validations are rather similar,
which indicates robustness of the models that is also reflected in the small stan-
dard deviations. We compare each 5 by 2-fold cross-validation MSE score using a
univariate ANOVA with all models as conditions and calculate the contrasts to the
mean and median baselines as references. Both ANOVAs violated the sphericity as-
sumption but still showed strong significance (p < 0.01) after Greenhouse-Geisser
correction of the degrees of freedom. The table shows that all models are signifi-
cantly better than the median baseline, and that most but not all models are also
significantly better than the mean baseline (after Bonferroni correction).

Apart from comparing the models against the baselines, we also perform pair-
wise comparisons between the best models of the categories time, text, sensor, and
combination, which we report in Table 2. For the pairwise comparisons we use the
modified paired t-tests as described in Dietterich (1998).

For time features, we notice that PeTime performs better than its length-
normalized alternative, and that both are significantly better than the two base-
lines. In contrast, the results for the text-based features do not differ as much from
each other, and are closer to the baselines, where BLEU, HTER, and HBLEU are
not significantly better than the mean baseline. Note in particular that contrary
to our expectation the results are worse than those for the time features.

The sensor features are again separated into the individual modalities. The
combined eye-based features show the best results, followed by the skin, keyboard,
and then heart. Inferred emotions and body posture considered individually show
worse results. Regarding inferred emotions, we only report the best emotion and
the best combined set of emotions, as all others had very similar results and in
general the MSE’s are very close to the baselines, indicating that these features in
this simple form do not perform well.

The last section among the sensor features shows that using a combination
of multiple modalities improves results considerably compared to each modality
used alone, and that this combination also performs better than the time and text-
based features. Here, the best result for up to 10 features and the best result for
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up to 5 combined features are reported, even though several other combinations
with similar results were found among the sampled features. The last section in
the table shows the results when combining not only sensor modalities, but also
incorporating time and text features. These results are also better than those of
multi-modal sensor features. Again, the best results for up to 10 and up to 5
feature combinations are reported.

We further use the 5 by 2 cross-validation results in combination with a mod-
ified t-test (Dietterich 1998) followed by Bonferroni-Holm corrections to test the
differences between the best models of time, text, sensor, and combined features
for significance. Table 2 shows that indeed the combined approach is significantly
better than time and text, and that sensor is better than text ; however the other
pairs reported in the table do not show significant differences.

4.6.2 Discussion

Although the concrete ratings differ between post-editors, the methods to mea-
sure CL, especially the multi-modal ones, are apparently transferable across par-
ticipants. When comparing time and text features, we are surprised to see that
PeTime seems to be the better, albeit not significantly better, measure of per-
ceived CL, which also performs quite well in general. The sentence length and
therefore length normalization does not seem to provide further insights in terms
of CL. Interestingly, the H-based text features do not improve results compared
to BLEU/TER as we have expected, and even contrarily, do not beat the simple
mean baseline on our dataset. A reason for this could be that CL does not focus
on how much needs to be edited, but on how difficult it is to do so, which strength-
ens the need for CL detection. Inspecting the data in further detail, we find 60
out of 260 cases where multiple participants rated the same segment as equally
tough while having an editing difference of more than 30 HBLEU. This supports
our above argument, that several cases exist where strong differences in editing
behavior do not impact the CL perception.

While the heart features all significantly outperform the baseline, they gener-
ally show similarly bad results as the text features. Based on the literature, we
were expecting to find better results here. In comparison to this, combining sev-
eral eye features yields the best results among all individual modalities, and also
better results than any time or text feature. Interestingly, the amount of blinking
alone already shows good results and is better than eye-tracking data using only
web-cam data (i.e. EARavg).

Combinations of GSR-based features or the accumulated GSR value also work
comparatively well, however, we had expected better results based on the literature
here. Since smartwatches are spreading and often include GSR sensors, this data
is especially interesting because it could be easily read by future CAT tools. For
the keyboard features we see only small differences between PWR and APR, and
the combination of both does not boost the model’s performance. Based on the
findings by Lacruz et al. (2012), we also expected better results for these features.

The normalized distance to the participant’s head does not perform better
than text-, time- or many of the sensor-based features and while being significantly
better than the baseline, the gains are diminishing small. Maybe more complex
features on the human body posture can provide better results in the future.
Emotions also do not perform better than most of the other features and the gains
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MSE
Features 1x10-CV↓(Reg.) 5x2-CV↓ (SD)
Baselines

SubjCLavg 2.466 (-) 2.465 (0.093)††

SubjCLmedian 2.540 (-) 2.538 (0.093)**
Time Features

PeTime 1.891 (Ridge) 1.878 (0.061)**††

LnPeTime 2.052 (Lasso) 2.037 (0.091)**††

Text Features

BLEU 2.330 (RF) 2.380 (0.118)††

TER 2.340 (RF) 2.350 (0.159)*††

HTER 2.311 (EN) 2.383 (0.174)†

HBLEU 2.341 (EN) 2.384 (0.150)††

SL 2.437 (Ridge) 2.444 (0.087)*††

HBLEU, TER, SL 2.261 (Ridge) 2.321 (0.165)*††

Sensor Features
Heart

RMSSDavg 2.285 (Ridge) 2.282 (0.054)**††

SDNNavg 2.352 (Ridge) 2.379 (0.078)**††

RMSSDavg, SDNNavg 2.304 (SVR) 2.309 (0.057)**††

Eyes

Blinks 2.034 (Ridge) 2.040 (0.062)**††

Fixavg 2.276 (SVR) 2.292 (0.131)**††

SaccDuravg 2.415 (Lasso) 2.421 (0.122)††

SearchProbavg 2.462 (Lasso) 2.247 (0.094)††

EARavg 2.424 (Ridge) 2.438 (0.093)**††

Blinks, Fixavg, SearchProbavg, EARavg 1.704 (RF) 1.803 (0.175)**††

Skin

GSRavg 2.462 (Lasso) 2.461 (0.093)††

GSRacc 2.181 (Lasso) 2.185 (0.041)**††

FreqGSRavg 2.402 (Ridge) 2.383 (0.082)*††

GSRavg, GSRacc, FreqGSRavg 2.074 (Ridge) 2.117 (0.079)**††

Keyboard

APR 2.307 (Ridge) 2.311 (0.139)**††

PWR 2.259 (SVR) 2.265 (0.128)**††

APR, PWR 2.219 (Ridge) 2.247 (0.139)**††

Body Posture

HeadDistavg 2.445 (SGD) 2.460 (0.095)**††

Emotions

Angeravg 2.430 (SGD) 2.445 (0.089)**††

Angeravg, Neutralavg, Sadnessavg, Surpriseavg 2.383 (RF) 2.420 (0.101)**††

Combined Sensors
Keyboard (TER)
Eye (Blinks, Fixavg, SaccDuravg, EARavg) 1.512 (RF) 1.639 (0.153)**††

Skin (GSRacc, GSRavg, FreqGSRavg)
Heart (SDNNavg, RMSSDavg)
Eye (Blinks, Fixavg, EARavg)
Skin (GSRacc, GSRavg) 1.595 (RF) 1.646 (0.115)**††

Combined Features
Time (PeTime)
Keyboard (APR, PWR)
Eye (Blinks, Fixavg, EARavg, SaccDuravg,

SearchProbavg) 1.434 (Ridge) 1.487 (0.069)**††

Skin (FreqGSRavg)
Heart (RMSSDavg)
Time (PeTime)
Skin (FreqGSRavg)
Eye (Blinks, Fixsavg) 1.490 (Ridge) 1.508 (0.084)**††

Heart (RMSSDavg)

Table 1: Feature evaluation results for 10-fold and 5 by 2-fold cross-validation
(CV) with standard deviation (SD). An asterisk (*) in the right column indicates
a significant difference to SubjCLavg, while a dagger (†) indicates a significant
difference to SubjCLmedian. */† represent p < 0.05, **/†† represent p < 0.01 after
Bonferroni correction.
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Time:

PeTime

Time

Text:

HBLEU,
TER,
SL

t̃ = 2.79 Text

Sensors:

Keyboard (TER)
Eye (Blinks, Fixavg, SaccDuravg,

EARavg)
Skin (GSRacc, GSRavg, FreqGSRavg)
Heart (SDNNavg, RMSSDavg)

t̃ = −2.07 t̃ = −7.06** Sensors

Combined:

Time (PeTime)
Keyboard (APR, PWR)
Eye (Blinks, Fixavg, EARavg,

SaccDuravg, SearchProbavg)
Skin (FreqGSRavg)
Heart (RMSSDavg)

t̃ = −10.75** t̃ = −4.59* t̃ = −0.55

Table 2: Pairwise comparisons between the best models of time, text, sensors, and
combined features. * shows significance with p < 0.05, while ** means p < 0.01
after Bonferroni-Holm correction. t̃ is the test statistics for the modified paired
t-test (Dietterich 1998).

compared to the baseline, albeit significant, have limited practical use. Again,
further investigation and more complex features than the normalized mean might
improve this in the future.

Combining the different sensor modalities improves the results, showing the
advantage of our multi-modal approach. This is in line with Vieira (2016)’s dis-
cussion after analyzing the correlations between eye, keyboard, time, and subjec-
tive measures, stating that “different measures may be more sensitive to different
nuances of cognitive effort, which would imply that, while a single construct, cog-
nitive effort might have different facets”. Our combined sensor modalities improve
(insignificantly) over time and (significantly) over text features (cf. Table 2), but
also seem better than any individual modality. When combining across time, text,
and sensor features, even better results are achieved, which significantly outper-
form both time and text features. Generally, these results show that combining
multiple modalities of CL indicators improves the regression quality, especially in
comparison to each individual modality.

To summarize, while almost all individual features statistically outperform the
baselines, the gains of most features are small; thus, the only practically really
interesting features are PeTime, the combination of several eye features, and in
particular the combination of features from several modalities. Regarding our hy-
pothesis stated earlier, we could show better results for combined than for sensor
features, which again outperformed time- and text-based features. However, con-



Multi-modal Indicators for Estimating Perceived Cognitive Load in PE of MT 17

trary to our expectations, time was a considerably better measure than text. One
should note that these results were achieved without optimizing feature prepro-
cessing, that no hyper-parameter tuning was applied, and that simple random
sampling of feature sets was used, because we were only interested in a fair com-
parison between the methods and not in finding the best possible model. Using a
more informed approach might therefore decrease the MSE’s in the future.

4.7 Why Multi-Modality Helps – Correlation Analysis

After inspecting the overall performance of different modalities and their combi-
nations in terms of regression analysis, we now inspect the individual features in
more detail. For space reasons, however, we cannot discuss every single feature.
Instead, we focus on some of the features used by the best-performing regressor
in the combined feature sets, and additionally the TER feature to also include a
text-based feature.

4.7.1 Results

Figure 2 shows violin plots of the individual feature values plotted against the
subjective CL ratings provided by each participant for the segments on which those
features were calculated. Inspecting the course of the means (circles) or medians
(crosses), we notice that there is a certain dependence between the individual
features and their corresponding ratings. At the same time, we can clearly see a
lot of noise around those means/medians (note that the limits in violin plots are
the minimum and maximum values).

An analysis of Spearman’s correlations between those features and the corre-
sponding subjective ratings yields further insights into why our various regressors
perform differently. To interpret the correlation coefficients, we use the interpre-
tation of Corder and Foreman (2009), stating that values around ±0.1 can be
considered as weak, values around ±0.3 as moderate, and values around ±0.5 as
strong correlations.

As can be seen in Table 3, PeTime strongly correlates (+0.505) with the sub-
jective ratings, which explains why the regressor trained solely on that feature
already performs quite well. This can also be seen in the corresponding plot, show-
ing an upwards tendency with only a moderate amount of noise. The text feature
TER on the other hand shows a lot of noise and a strong divergence between
means and medians. The correlation coefficient of +0.276 can be interpreted as
moderate. Contrary to the results for TER, there is a negative correlation for the
heart feature RMSSDavg (−0.220) that is weak to moderate. For the eye features
Blinks, Fixavg and SaccDuravg, we find strong positive (+0.453), moderate nega-
tive (−0.262), and weak to moderate positive correlations (+0.193), respectively.
For skin features, we can observe moderate negative correlations (−0.264) with
subjective CL ratings. One should note here that for the plot and calculation the
imaginary part of this feature was dropped. Last, for the keyboard-based feature
APR we can also observe moderate negative correlations (−0.308). All reported
Spearman correlations are statistically significant with p-values < 0.001.
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Fig. 2: Violin plots for different feature values per subjective rating (x-axis). The
circles indicate the means, the crosses the medians.
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Feature Spearman’s ρ Interpretation p-value

PeTime +0.505 Strong < 0.001
TER +0.276 Moderate < 0.001
RMSSDavg −0.220 Weak to moderate < 0.001
Blinks +0.453 Strong < 0.001
Fixavg −0.262 Moderate < 0.001
SaccDuravg +0.193 Weak to moderate < 0.001
FreqGSRavg −0.264 Moderate < 0.001
APR −0.308 Moderate < 0.001

Table 3: Spearman’s correlation results between different features and subjective
CL ratings.

4.7.2 Discussion

These results show why multi-modality helps: apart from PeTime and Blinks,
all reported correlations are weak to moderate, so by themselves not sufficient
for good subjective CL detections. However, each modality provides a little more
insight into the overall CL perception. Therefore, combining features of several
modalities in a single regressor increases its performance. This is also why the best
regressor of the eye features (cf. Table 1), or the regressors of combined features,
show better results than the regression model trained solely on PeTime, even
though the latter correlates more strongly. The combination with this strongly
correlated PeTime that was used in the best model of the combined feature sets
then naturally improves performance compared to the models of sensor -based
features. Note however, that Spearman correlations can only capture monotonic
correlations, thus more complex, e.g. bell-shaped, or even concave relationships
cannot be analyzed using this method.

In practice, of course, one should consider what modalities are available and
feasible and stack these to achieve better accuracy. Freelance translators probably
do not have eye-tracking devices at home; however, as smart watches and fitness
trackers are becoming more and more common, an integration of CL detections
based on skin and heart data gathered through such devices could be a good
and simple addition to CAT tools. Translation companies with fixed workstations
might even consider investing in consumer eye trackers like the one used in this
study, as the eye features seemingly perform best in this setting. Naturally these
modalities should be combined with the easy-to-integrate keyboard- and time-
based features that do not require any additional hardware, to increase the CL
detection accuracies further.

4.8 Limitations

The presented results are subject to the following limitations: the data sample is
relatively small, since only 10 subjects participated in our study, and the partici-
pants were translation master’s students and not experts with several years of work
experience. Next, while we performed cross-validation and only report results on
segments unseen during training, we did not completely leave out participants and
then predict those participants’ perceived CL from the data gathered by the other
participants. Thus, to achieve these results in practice one may need to fine-tune
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and train for new users and cannot expect the existing model to work immediately.
Furthermore, the choice of sentences, upon which our two test participants roughly
agreed, might lead to different results than evaluating the approach in-the-wild.
Moreover, our prediction approach is rather indirect: using sensor measurements,
we predict the subjectively assessed CL, which we assume to be a good proxy for
actual CL based on the literature. While the rating scale used has been utilized
in a large variety of experiments, participants may still have had different inter-
pretations of the scale’s labels that might have biased the results. One should also
note that our eye tracker only samples at 90 Hz (as opposed to 240 Hz), which
could affect the peak velocity reconstruction and thereby saccades (Mack et al.
2017). Last, due to the high variability across subjects, mixed effect regression
models (Demberg and Sayeed 2016) might provide further interesting findings in
the future.

5 Conclusions and Future Work

In this paper we have focused on perceived cognitive PE effort and argued for
the need to robustly measure CL during PE. In contrast to the related works
in the translation domain, we investigated whether and how multiple modalities
to measure CL can be combined and used for the task of predicting the level
of perceived CL during PE of MT. To the best of our knowledge, several of the
implemented physiological and behavioral features, e.g. heart rate variability or
eye aspect ratio, have not previously been explored in PE. In our study, PE time
correlates strongly with perceived CL; however, text-based features show weaker
performance. Among the sensor modalities, eye-based features (in particular the
blink amount) show the best results, but combining multiple modalities like those
based on the skin, eye, etc. improves results further, showing the advantages of a
multi-modal approach. Using such a combination of modalities, we can estimate
CL during PE without interrupting the actual process through manual ratings.

Currently, all our features are calculated on all data available per segment,
which is sufficient to predict perceived CL after finishing the segment. However, in
contrast to the time and text features, almost all of our sensor features are averaged
across the raw data within a segment. Therefore, in the future we want to inves-
tigate, whether we can detect the level of CL even before finishing a segment, by
calculating running averages instead. Furthermore, more detailed investigations of
the features, e.g. in terms of data filtering approaches or hyper-parameter tuning,
will be investigated to make better use of the available data than the regression
approach chosen for this work. The long-term goal is to be able to decrease the
perceived CL, and thereby stress and exhaustion, during PE. One approach could
be to automatically fine-train MT systems on the user’s CL measurements to pro-
duce less demanding outputs. Another possibility would be to intervene in the
PE process within CAT tools when high loads are detected, e.g. by automatically
showing alternative translations or other forms of assistance. The measurement
techniques explored within this paper form the basis for future research towards
this goal.
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