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Abstract

This paper presents our English–German
Automatic Post-Editing (APE) system
submitted to the APE Task organized
at WMT 2018 (Chatterjee et al., 2018).
The proposed model is an extension of
the transformer architecture: two sepa-
rate self-attention-based encoders encode
the machine translation output (mt) and
the source (src), followed by a joint en-
coder that attends over a combination of
these two encoded sequences (encsrc and
encmt) for generating the post-edited sen-
tence. We compare this multi-source ar-
chitecture (i.e, {src,mt} → pe) to a
monolingual transformer (i.e., mt → pe)
model and an ensemble combining the
multi-source {src,mt} → pe and single-
source mt → pe models. For both the
PBSMT and the NMT task, the ensem-
ble yields the best results, followed by
the multi-source model and last the single-
source approach. Our best model, the en-
semble, achieves a BLEU score of 66.16
and 74.22 for the PBSMT and NMT task,
respectively.

1 Introduction & Related Work

The ultimate goal of machine translation (MT)
is to provide fully automatic publishable quality
translations. However, state-of-the-art MT sys-
tems often fail to deliver this; translations pro-
duced by MT systems contain different errors and
require human interventions to post-edit the trans-
lations. Nevertheless, MT has become a standard
in the translation industry as post-editing on MT
output is often faster and cheaper than performing
human translation from scratch.

APE is a method that aims to automatically cor-
rect errors made by MT systems before perform-
ing actual human-post-editing (PE) (Knight and
Chander, 1994), thereby reducing the translators’
workload and increasing productivity (Parra Es-
cartı́n and Arcedillo, 2015b,a; Pal et al., 2016a).
Various automatic and semi-automatic techniques
have been developed to auto-correct repetitive er-
rors (Roturier, 2009; TAUS/CNGL Report, 2010).
The advantage of APE lies in its capability to
adapt to any black-box (first-stage) MT engine;
i.e., upon availability of human-corrected post-
edited data, no incremental training or full re-
training of the first-stage MT system is required
to improve the overall translation quality. APE
can therefore be viewed as a 2nd-stage MT system,
translating predictable error patterns in MT output
to their corresponding corrections. APE training
data minimally involves MT output (mt) and the
human-post-edited (pe) version of mt, but may ad-
ditionally make use of the source (src). A more
detailed motivation on APE can be found in Bojar
et al. (2015, 2016, 2017).

Based on the training process, APE systems
can be categorized as either single-source (mt →
pe) or multi-source ({src,mt} → pe) ap-
proaches. In general, the field of APE covers
a wide methodological range, including SMT-
based approaches (Simard et al., 2007a,b; Lagarda
et al., 2009; Rosa et al., 2012; Pal et al., 2016c;
Chatterjee et al., 2017b), and neural APE (Pal
et al., 2016b; Junczys-Dowmunt and Grund-
kiewicz, 2016; Pal et al., 2017) based on neural
machine translation (NMT). Some of the state-
of-the-art multi-source approaches, both statistical
(Béchara et al., 2011; Chatterjee et al., 2015) and
recently neural (Libovický et al., 2016; Chatter-
jee et al., 2017a; Junczys-Dowmunt and Grund-
kiewicz, 2016; Varis and Bojar, 2017), explore
learning from {src,mt} → pe (multi-source, MS)



to take advantage of the dependencies of transla-
tion errors in mt originating from src.

Exploiting source information in multi-source
neural APE can be configured either by using
a single encoder that encodes the concatenation
of src and mt (Niehues et al., 2016) or by us-
ing two separate encoders for src and mt and
passing the concatenation of both encoders’ final
states to the decoder (Libovický et al., 2016). A
few approaches to multi-source neural APE have
been proposed in the WMT-2017 APE shared task.
Junczys-Dowmunt and Grundkiewicz (2017) ex-
plore different combinations of attention mecha-
nisms including soft attention and hard monotonic
attention on an end-to-end neural APE model that
combines both mt and src in a single neural ar-
chitecture. Chatterjee et al. (2017a) extend the
two-encoder architecture of multi-source models
presented in Libovický et al. (2016). In their ex-
tension each encoder concatenates both contexts
having their own attention layer that is used to
compute the weighted context of src and mt. Fi-
nally, a linear transformation is applied on the con-
catenation of both weighted contexts. Varis and
Bojar (2017) implement and compare two multi-
source architectures: In the first setup, they use
a single encoder with concatenation of src and
mt sentences, and in the second setup, they use
two character-level encoders for mt and src, sep-
arately, along with a character-level decoder. The
initial state of this decoder is a weighted combina-
tion of the final states of the two encoders.

Intuitively, such an integration of source-
language information in APE should be useful
in conveying the context information to improve
the APE performance. To provide the awareness
of errors in mt originating from src, the trans-
former architecture (Vaswani et al., 2017), which
is built solely upon attention mechanisms (Bah-
danau et al., 2015), makes it possible to model
dependencies without regard to their distance in
the input or output sequences and also captures
global dependencies between input and output (for
our case src, mt, and pe). The transformer ar-
chitecture replaces recurrence and convolutions
by using positional encodings on both the input
and output sequences. The encoder and decoder
both use multi-head (facilitating parallel compu-
tations) self-attention to compute representations
of their corresponding inputs, and also compute
multi-head vanilla-attentions between encoder and

decoder representations.
Our APE system extends this transformer-based

NMT architecture (Vaswani et al., 2017) by us-
ing two encoders, a joint encoder, and a single de-
coder. Our model concatenates two separate self-
attention-based encoders (encsrc and encmt) and
passes this sequence through another self-attended
joint encoder (encsrc,mt) to ensure capturing de-
pendencies between src and mt. Finally, this
joint encoder is fed to the decoder which follows a
similar architecture as described in Vaswani et al.
(2017). The entire model is optimized as a single
end-to-end transformer network.

2 Transformer-Based Multi-Source APE

MT errors originating from the input source sen-
tences suggest that APE systems should lever-
age information from both the src and mt, in-
stead of considering mt in isolation. This can
help the model to disambiguate corrections ap-
plied at every time step. Generating the pe output
from mt is greatly facilitated by the availability of
src. To achieve benefits from both single-source
(mt → pe) and multi-source ({src,mt} → pe)
APEs, our primary submission in the WMT 2018
shared task is an ensemble of these two models.

Transformer-based models are currently pro-
viding state-of-the-art performance in MT; hence,
we want to explore a similar architecture for this
year’s APE task. We extend the transformer archi-
tecture to investigate how efficient this approach
is in a multi-source scenario. In a MT task, it
was already shown that a transformer can learn
long-range dependencies. Therefore, we explore
if we can leverage information from src and mt
via a joint encoder through self-attention (see Sec-
tion 2.2) to provide dependencies between src–mt
that are then projected to the pe.

To investigate this, we implement and evaluate
three different models: a single-source approach,
a multi-source approach, and an ensemble of both,
described in more detail below.

2.1 Single-Source Transformer for APE
(mt → pe)

Our single-source model (SS) is based on
an encoder-decoder-based transformer architec-
ture (Vaswani et al., 2017). Transformer models
can replace sequence-aligned recurrence entirely
and follow three types of multi-head attention:
encoder-decoder attention (also known as vanilla



Figure 1: Multi-source transformer-based APE

attention), encoder self-attention, and masked de-
coder self-attention. Since for multi-head atten-
tion each head uses different linear transforma-
tions, it can learn these separate relationships in
parallel, thereby improving learning time.

2.2 Multi-source Transformer for APE
({src,mt} → pe)

For our multi-source model (MS), we propose
a novel joint transformer model (cf. Figure 1),
which combines the encodings of src and mt
and attends over a combination of both sequences
while generating the post-edited sentence. Apart
from encsrc and encmt, each of which is equiva-
lent to the original transformer’s encoder (Vaswani
et al., 2017), we use a joint encoder with an
equivalent architecture, to maintain the homo-
geneity of the transformer model. For this, we ex-
tend Vaswani et al. (2017) by introducing an addi-
tional identical encoding block by which both the
encsrc and the encmt encoders communicate with
the decoder.

Our multi-source neural APE computes inter-
mediate states encsrc and encmt for the two
encoders, encsrc,mt for their combination, and
decpe for the decoder in sequence-to-sequence
modeling. One self-attended encoder for src maps
s = (s1, s2, ..., sk) into a sequence of continuous
representations, encsrc = (e1, e2, ..., ek), and a
second encoder for mt, m = (m1,m2, ...,ml), re-
turns another sequence of continuous representa-
tions, encmt = (e

′
1, e

′
2, ..., e

′
l). The self-attended

joint encoder (cf. Figure 1) then receives the con-

catenation of encsrc and encmt, encconcat =
[encsrc, encmt] as an input, and passes it through
the stack of 6 layers, with residual connections,
a self-attention and a position-wise fully con-
nected feed-forward neural network. As a result,
the joint encoder produces a final representation
(encsrc,mt) for both src and mt. Self-attention
at this point provides the advantage of aggregat-
ing information from all of the words, including
src and mt, and successively generates a new rep-
resentation per word informed by the entire src
and mt context. The decoder generates the pe out-
put in sequence, decpe = (p1, p2, . . . , pn), one
word at a time from left to right by attending pre-
viously generated words as well as the final repre-
sentations (encsrc,mt) generated by the encoder.

2.3 Ensemble
In order to leverage the network architecture for
both single-source and multi-source APE as dis-
cussed above, we decided to ensemble several ex-
pert neural models. Each model is averaged using
the 5 best saved checkpoints, which generate dif-
ferent translation outputs. Taking into account all
these generated translation outputs, we implement
an ensemble technique based on the frequency of
occurrence of the output words. Corresponding to
each input word, we calculate the most frequent
occurrence of the output word from all the gener-
ated translation outputs. For the two different APE
tasks, we ensemble the following models:

• PBSMT task: We ensemble a SS (mt → pe)
and a MS ({src,mt} → pe) average model.

• NMT task: We ensemble two average SS
(mt → pe) and MS ({src,mt} → pe) mod-
els, together with a SS and a MS model that
are fine-tuned on a subset of the training set
(cf. Section 3.3.2).

3 Experiments

In our experiment we investigate (1) how well the
transformer-based APE architecture performs in
general, (2) if our multi-source architecture using
the additional joint encoder improves the perfor-
mance over a single-source architecture, and (3) if
ensembling of single-source and multi-source ar-
chitectures facilitates APE even further.

3.1 Data
Since this year’s WMT 2018 APE task (Chatterjee
et al., 2018) is divided into two sub-tasks, differ-



ent datasets are provided for each task: for the PB-
SMT task, there is a total of 23K English–German
APE data samples (11K from WMT 2016 and 12K
from WMT 2017) (Bojar et al., 2017). For the
NMT task, 13,442 samples of English–German
APE data are provided.

All released APE data consists of English–
German triplets containing source English text
(src) from the IT domain, the corresponding Ger-
man translations (mt) from a first stage MT sys-
tem, and the corresponding human-post-edited
version (pe), all of them already tokenized. As this
released APE dataset is small in size (see Table 1),
additional resources are also available: first, the
‘artificial training data’ (Junczys-Dowmunt and
Grundkiewicz, 2016) containing 4.5M sentences,
4M of which are weakly similar to the WMT
2016 training data, while 500K show very simi-
lar TER statistics; and second, the synthetic ‘eS-
CAPE’ APE corpus (Negri et al., 2018), consist-
ing of more than 7M triples for both NMT and
PBSMT.

Table 1 presents the statistics of the released
data for the English–German APE Task organized
in WMT 2018. These datasets, except for the
eSCAPE corpus, do not require any preprocessing
in terms of encoding or alignment.

For cleaning the noisy eSCAPE dataset contain-
ing many unrelated language words (e.g. Chinese),
we perform the following two steps: (i) we use
the cleaning process described in Pal et al. (2015),
and (ii) we execute the Moses (Koehn et al., 2007)
corpus cleaning scripts with minimum and max-
imum number of tokens set to 1 and 80, respec-
tively. After cleaning, we use the Moses tokenizer
to tokenize the eSCAPE corpus. To handle out-
of-vocabulary words, words are preprocessed into
subword units (Sennrich et al., 2016) using byte-
pair encoding (BPE).

3.2 Hyper-Parameter Settings

For {src,mt} → pe, both the self-attended en-
coders, the joint encoder, and the decoder are com-
posed of a stack of N = 6 identical layers fol-
lowed by layer normalization. Each layer again
consists of two sub-layers and a residual connec-
tion (He et al., 2016) around each of the two sub-
layers. During training, we employ label smooth-
ing of value ϵls = 0.1. The output dimension pro-
duced by all sub-layers and embedding layers is
defined as dmodel = 256. All dropout values in the

network are set to 0.2. Each encoder and decoder
contains a fully connected feed-forward network
having dimensionality dmodel = 256 for the input
and output and dimensionality dff = 1024 for the
inner layer. This is a similar setting to Vaswani
et al. (2017)’s C − model1. For the scaled dot-
product attention, the input consists of queries
and keys of dimension dk, and values of dimen-
sion dv. As multi-head attention parameters, we
employ h = 8 for parallel attention layers, or
heads. For each of these we use a dimensional-
ity of dk = dv = dmodel/h = 32. For optimiza-
tion, we use the Adam optimizer (Kingma and Ba,
2015) with β1 = 0.9, β2 = 0.98 and ϵ = 10−9.
The learning rate is varied throughout the training
process, first increasing linearly for the first train-
ing steps warmupsteps = 4000 and then adjusted
as described in (Vaswani et al., 2017).

At training time, the batch size is set to 32
samples, with a maximum sentence length of 80
subwords, and a vocabulary of the 50K most fre-
quent subwords. After each epoch, the train-
ing data is shuffled. For encoding the word or-
der, our model uses learned positional embed-
dings (Gehring et al., 2017), since Vaswani et al.
(2017) reported nearly identical results to sinu-
soidal encodings. After finishing training, we save
the 5 best checkpoints saved at each epoch. Fi-
nally, we use a single model obtained by averag-
ing the last 5 checkpoints. During decoding, we
perform greedy-search-based decoding.

We follow a similar hyper-parameter setup for
mt → pe. The total number of parameters for our
{src,mt} → pe and mt → pe model is 46× 106

and 28× 106, respectively.

3.3 Experiment Setup

In this section, we present the training process,
using the above datasets, to train mt → pe,
{src,mt} → pe, and ensemble models for both
PBSMT and NMT.

3.3.1 PBSMT Task
For PBSMT, we first train both our SS and MS
systems with the cleaned eSCAPE corpus for 3
epochs. We then perform transfer learning with
4M artificial data for 7 epochs. Afterwards, fine-
tuning is performed using the 500K artificial and
23K real PE training data for another 20 epochs.

1Note: at the time of submission we couldn’t test the
Transformer (big) model due to unavailability of enough
computation power



Sentences
Corpus 2016 2017 2018 Cleaning

PBSMT
Train 12,000 11,000 - -
Dev 1,000 - - -
Test 2,000 2,000 2,000 -

NMT
Train - - 13,442 -
Dev - - 1,000 -
Test - - 1,023 -

Additional
Resources

Artificial - 4M + 500K - -
eSCAPE-PBSMT - - 7,258,533 6,521,736
eSCAPE-NMT - - 7,258,533 6,485,507

Table 1: Statistics of the WMT 2018 APE Shared Task Dataset.

Furthermore, we generate an ensemble model, by
averaging the 5 best checkpoints of SS with the 5
best checkpoints of MS.

We use the WMT 2016 development data
(dev2016) containing 1,000 triplets to validate the
model during training. To test our system per-
formance, we use the WMT 2016 and 2017 test
data (test2016, test2017), each containing 2,000
triplets. Furthermore, we report the results of the
submitted ensemble model on test2018.

3.3.2 NMT Task
Initial tests for pre-training our NMT model on
the NMT eSCAPE data showed no performance
improvements. Therefore, we use the PBSMT
SS and MS models as a basis for the NMT task.
We use the PBSMT models after training them
on the eSCAPE corpus, the 4M artificial data and
the 500K + 23K train sets of WMT 16 and 17.
These SMT-based models are then fine-tuned us-
ing the WMT 2018 NMT APE data (train18) for
60 epochs.

Afterwards, we perform an additional fine-
tuning step towards the dev18/test18 dataset: For
this, we extract sentences of train18 that are simi-
lar to the sentences contained in dev18/test18 and
fine-train for another 15 epochs on this subset of
train18, which we call fine-tune18. As a sim-
ilarity measure we use the cosine similarity be-
tween the train src and mt segments and the test
src and mt segments, respectively. These cosine
similarities for src and mt are then simply multi-
plied to achieve an overall similarity measure. Our
fine-tuning dataset contains only sentences with an
overall similarity of at least 0.9.

Last, two separate ensemble models are created.
One consists of only the non-fine-tuned SS and
MS models, and one ensembles the SS and MS
models in both fine-tuned and non-fine-tuned vari-
ants. Both ensembles are created by averaging
over the 5 best checkpoints of each sub-model.

We report the results of all created models for
the dev18 NMT dataset, and additionally those of
the submitted overall ensemble model on test18.

3.4 Results and Discussion

Table 2 presents the results for the PBSMT APE
task (cf. 3.3.1), where two different transformer-
based models, one ensemble of these models and
the baseline BLEU scores are shown. The base-
line here refers to the original MT output evalu-
ated with respect to the corresponding PE transla-
tion. All models yield statistically significant re-
sults (p < 0.001) over this baseline. MSavg also
provides statistically significant improvement over
SSavg. For this and all following significance tests
we employ the method by Clark et al. (2011)2.

Generally, reasons for the good performance of
our transformer-based MS architecture in compar-
ison to the SS approach for PBSMT-based APE
could be the positional encoding that injects in-
formation about the relative or absolute position
of the tokens in the sequence. This might help
to handle word order errors in mt for a given
src context. Another possible explanation lies in
the self-attention mechanism, which handles lo-
cal word dependencies for src, mt, and pe. Af-
ter the individual dependencies are learned by
the two encoders’ self-attention mechanisms, an-
other level of self-attention is performed that can
jointly learn from both src and mt using our
joint encoder, thereby informing the decoder about
the long-range dependencies between the words
within both src and mt. Compared to RNNs,
we believe that this technique can better convey
source information via mt to the decoder. The
ensemble model then leverages the advantages of
both our SS and MS approaches to further improve
the results.

The results for our transformer-based architec-
2https://github.com/jhclark/multeval

https://github.com/jhclark/multeval


WMT APE Systems eScape 4M 500K train16 train17 test16 test17 test18
Baseline - 62.92 62.11 62.99
MSavg 3 eps 7 eps 20 eps 67.31 67.66 -
SSavg 3 eps 7 eps 20 eps 66.27 66.60 -
Ensemble MSavg{5cps} + SSavg{5cps} 68.52 68.91 66.16

Table 2: Evaluation result of WMT 2018 PBSMT task for all trained models.

WMT APE Systems Base Model train18 fine-tune18 dev18 test18
Baseline - - - 76.66 74.73
MSavg MSavg (PBSMT) 60 eps - 74.84 -
SSavg SSavg (PBSMT) 60 eps - 72.75
MSfinetuned MSavg (NMT) - 15 eps 75.05 -
SSfinetuned SSavg (NMT) - 15 eps 73.17 -
Ensemble MSavg{5cps} + SSavg{5cps} 75.80 -
Ensemblefinetuned MSavg{5cps} + SSavg{5cps} + MSfinetuned{5cps} + SSfinetuned{5cps} 75.96 74.22

Table 3: Evaluation result of WMT 2018 NMT task for all trained models.

ture for the NMT task are shown in Table 3. As can
be seen, the baseline NMT system performs best,
followed by the ensemble models, then the multi-
source architectures and lastly the single-source
approach. These differences between the three
approaches, ensemble, MS, and SS, are all sta-
tistically significant. Fine-tuning provides some
small, albeit insignificant, improvements over the
non-fine-tuned versions.

While none of our architectures perform better
than the baseline MT system for the NMT task, we
clearly see that the multi-source approach helps,
and that ensembling of different SS and MS mod-
els further increases the performance. These re-
sults are in line with our expectations, because in-
tuitively, inspecting both src and mt should help
detect and correct common errors. However, we
are unsure why all models did not improve over
the baseline, which could have been achieved by
simply copying the mt. One reason might be the
small amount of PE data, which comprises only
13K samples; this could also explain why the sim-
ple fine-tuning approach already leads to slightly
higher BLEU scores. However, further human
evaluation is necessary to better understand what
our model is doing for the neural APE task and
why it remains approximately 0.5 BLEU points
below the baseline.

4 Conclusions and Future Work

In this paper, we investigated a novel transformer-
based multi-source APE approach that jointly at-
tends over a combination of src and mt to capture
dependencies between the two. This architecture
yields statistically significant improvements over
single-source transformer-based models. An en-

semble of both variants increases the performance
further. For the PBSMT task, the baseline MT sys-
tem was outperformed by 3.2 BLEU points, while
the NMT baseline remains 0.51 BLEU points bet-
ter than our APE approach on the 2018 test set.

In the future, we will investigate if the perfor-
mance of each system can be improved by using
a different hyper-parameter setup. Unfortunately,
we could not test either the ‘big’ or the ‘base’
hyper-parameter configuration in Vaswani et al.
(2017) due to unavailable computing resources at
the time of submission. As additional future work,
we would like to explore whether using re-ranking
and ensembling of different neural APEs helps to
improve the performance further. Moreover, we
will incorporate word-level quality estimation fea-
tures of mt into the encoding layer. Lastly, we
will evaluate if our model indeed is able to bet-
ter handle word order errors and to capture long-
range dependencies, as we expect. Furthermore,
we will analyze if adapting the learning rate to the
size of the datasets used during training increases
the performance compared to the currently used
fixed learning rate initialization of 0.001.
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Jindřich Libovický, Jindřich Helcl, Marek Tlustý,
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