
SAARLAND UNIVERSITY

Faculty of Natural Sciences and Technology I
Department of Computer Science

Bachelor’s thesis

FrAPP - Framework for Automated
Product Placement

Nico Herbig
Bachelor’s Program in Computer Science
February 2014

Advisors
Gerrit Kahl, German Research Center for Artificial Intelligence,
Saarbrücken, Germany

Frederic Raber, German Research Center for Artificial Intelligence,
Saarbrücken, Germany

Reviewers
Prof. Dr. Antonio Krüger, German Research Center for Artificial Intelligence,
Saarbrücken, Germany

Prof. Dr. Peter Loos, German Research Center for Artificial Intelligence,
Saarbrücken, Germany

Submitted
26th of February, 2014

Saarland University
Faculty of Natural Sciences and Technology I
Department of Computer Science
Campus - Building E1.1
66123 Saarbrücken
Germany

Statement in Lieu of an Oath:

I hereby confirm that I have written this thesis on my own and that I have not
used any other media or materials than the ones referred to in this thesis.

Saarbrücken, 26th of February, 2014

Declaration of Consent:

I agree to make both versions of my thesis (with a passing grade) accessible to the
public by having them added to the library of the Computer Science Department.

Saarbrücken, 26th of February, 2014

Acknowledgments

I sincerely thank Prof. Dr. Antonio Krüger and Prof. Dr. Peter Loos for reviewing
my thesis. Also I would like to express my gratitude to my adviser Gerrit Kahl
for his continuous support and feedback. Furthermore, I want to thank Frederic
Raber for the useful remarks and comments. Also, I would like to thank GLOBUS
SB-Warenhaus Holding in St. Wendel for providing the data which enabled me to
perform realistic evaluations. I also want to express my gratitude to Dr. Michael
Piotrowski who allowed me to use his LaTeX template. Lastly, I want to thank
my family and friends who have supported me throughout the entire process.

v

Abstract

The main objective of this thesis is to find optimal solutions for the shelf space allo-
cation problem in retailing: how much space should be assigned to the individual
products and where should they be placed in order to maximize the category
profit? Therefore, a mathematical optimization model was formalized and an
efficient algorithm for solving this model was determined. The implemented
system called FrAPP, Framework for Automated Product Placement, offers an
interface for selecting boards and products and allows to specify further criteria
such as minimum facing amounts and stacking limits. Furthermore, to fulfill
merchandising specifications, users can manually place products and let FrAPP
optimize the empty space around them. It is also possible to enter discounts
achieved by purchasing a specific amount of products from the producer or
wholesaler merchant, which will then be considered in the computation. The out-
put solution is placed directly into a 3D model of a supermarket through which
the user can navigate. FrAPP also offers the possibility to export a planogram of
the found solution as a web page for easy accessibility.

For formalizing the optimization model a function capturing the demand in a
given placement is needed. To make the model practical, the demand function
aims to only use available data and at the same time reflect reality as closely as
possible. It contains known parameters as the facing area, the space elasticity
and location values, however, trends and the so called cross space location
elasticity are also introduced. Here, the trends reflect the expected sales or
losses due to factors outside of the store such as advertisement. The cross space
location elasticity is an improvement to the well known cross space elasticity
and combines the effects of space and location of one product on the demand of
a substitute product. In order to express the fact that some products are more
popular than others even if placed equally, the so called worst allocation demand
is used. That is, the demand a product would achieve if it had one single facing
on the lowest board. This worst allocation demand can be computed from the
previous sales and placements and even incorporates regional differences in
popularity.

The evaluation function of the optimization model is the overall profit achieved
by the placement. All valid solutions must fulfill the following requirements:
first, given upper and lower bounds on the facing amounts and stacking limits
have to be satisfied. Secondly, decreases in demand due to disappearing facings
as well as stock-outs are prohibited as they would result in financial penalties.
Finally, all instances of a product must be connected to achieve a minimum level
of sorting and therefore avoid irritating solutions.

As the search space is too large for simple brute force algorithms, FrAPP uses a
simulated annealing based hyper-heuristic as an optimization algorithm. This
hyper-heuristic approach uses a set of heuristics to generate neighbors instead
of one single neighboring function and can therefore adapt to different problem

vii

instances easily. The heuristics were created such that they fulfill the above
requirements with high probability. To improve customer satisfaction, the found
solutions are sorted by brand or type while keeping the quality of the placement
intact. Apart from a single threaded version three different parallelization modes
were implemented. An evaluation with data provided by a German retailer
showed that all algorithms are able to find the optimal solution within a small
amount of time. However, some algorithms outperform the others depending on
the allowed computation time.

viii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Terminology . 2

2 Related Work 5

2.1 Optimization Models . 5

2.1.1 General Approach . 5

2.1.2 A Simple Demand Model Using Space Only 6

2.1.3 Considering Location and Inventory Level Effects of Demand 7

2.1.4 Joint Optimization of Price, Orientation and Shelf-Space
Allocation . 8

2.1.5 Further Ideas . 9

2.2 Solving Procedures . 12

2.2.1 MINLP-Solver . 12

2.2.2 Dynamic Programming . 14

2.2.3 Genetic Algorithm . 15

2.2.4 Simulated Annealing Based Hyper-Heuristic 18

2.3 Comparison with FrAPP . 21

3 Mathematical Model 23

3.1 Demand Function . 23

3.1.1 Demand Parameters . 23

3.1.2 Formalization . 26

3.1.3 Improved Demand Function 28

3.2 Optimization Model . 29

3.2.1 Profit . 29

3.2.2 Requirements . 29

3.2.3 Formalization . 32

ix

4 Optimization Algorithm 35

4.1 General Algorithm . 35

4.2 Finding an Initial Solution . 38

4.3 Heuristics . 39

4.4 Satisfying Requirements . 42

4.4.1 Facing Bounds . 42

4.4.2 Prohibit Stock-Outs . 42

4.4.3 Product Connectivity . 43

4.5 Sorting . 44

4.6 Concurrency Modes . 46

5 Implementation 49

5.1 Implementation Details . 49

5.2 Parameter Estimation . 50

5.3 Program Interaction . 52

5.3.1 GUI . 52

5.3.2 Export . 58

6 Evaluation 63

6.1 Overview and Setup . 63

6.2 Problem Instance 1 . 64

6.3 Problem Instance 2 . 65

6.4 Problem Instance 3 . 66

6.5 Conclusion . 68

7 Conclusion and Future Work 69

7.1 Summary and Conclusion . 69

7.2 Future Work . 71

Appendices

A An Exported Placement 73

Bibliography 82

x

List of Figures

2.1 General Approach: Overview . 6

2.2 Genetic Algorithm: Initial Population 15

2.3 Genetic Algorithm: Pairing . 16

2.4 Genetic Algorithm: Mutation . 16

2.5 Genetic Algorithm: Parent Generation Dies 17

2.6 Genetic Algorithm: Constraint Checking 17

2.7 Genetic Algorithm: Survival of the Fittest 18

3.1 Demand Function: Overview . 24

3.2 Computing the Location Value: Example 24

3.3 Product Connectivity: Example 1 30

4.1 Optimization Algorithm: Overview 38

4.2 Swap1FacingHorizontalRandom heuristic 40

4.3 Swap1FacingVerticalRandom heuristic 40

4.4 Swap1FacingWithNeighborBoard heuristic 41

4.5 SwapAllocation heuristic . 41

4.6 EqualDistribution heuristic . 41

4.7 ReduceFacingsToMinimum heuristic 41

4.8 Product Connectivity: Example 2 43

4.9 Sorting by Type . 45

4.10 Sorting by Brand . 45

4.11 Single Threaded Simulated Annealing Based Hyper-Heuristic . . 47

4.12 Parallelization Mode Parallel Runs 47

4.13 Parallelization Mode Parallel Heuristics 48

4.14 Parallelization Mode Parallel Neighbors 48

5.1 GUI: Overview . 53

5.2 GUI: Problem Specification . 54

5.3 A Stocked Shelf in 3D View . 57

5.4 Feedback on Performance . 57

xi

5.5 Export: Computation of Camera Location 58

5.6 Export: Planogram . 59

5.7 Export: Table According to Image 60

5.8 Export: Table with one Row per Facing 61

6.1 Evaluation: Solution of Problem 1 64

6.2 Evaluation: Solutions of Problem 2 66

6.3 Evaluation: Solution of Problem 3 67

A.1 Export: Table According to Image, Part 1 74

A.2 Export: Table According to Image, Part 2 75

A.3 Export: Table According to Image, Part 3 76

A.4 Export: Table with one Row per Facing, Part 1 76

A.5 Export: Table with one Row per Facing, Part 2 77

xii

List of Tables

2.1 Comparison of Demand Factors . 21

3.1 Comparison of Optimization Models 31

5.1 Location Values . 50

6.1 Evaluation Problem 1 . 65

6.2 Evaluation Problem 3 . 67

xiii

Chapter 1
Introduction

This thesis addresses the shelf space allocation problem: how much space should
a retailer assign to a particular product in a category and where should he place
the product instances on the shelf in order to maximize the category profit?

1.1 Motivation

With today’s huge product diversity it is impossible to assign each product on the
market a sufficiently large amount of space. Therefore, the retailer has to select a
set of products he wants to allocate to the shelves first and afterwards choose the
amount of space and location within the shelf for each product. It is important to
note that the retailer’s and the manufacturer’s goals differ: the retailer wants to
maximize the overall category profit while in contrast the manufacturer’s goal
is to maximize the individual profits of his products (Murray et al. [1]). Hereby,
products should have enough space to avoid out-of-stocks which result in lost
sales but at the same time assigning too much space to a product might be less
profitable than using the scarce space for another product. However, finding
the right amount of space for each product is only part of the problem. The
decision about the assigned space has to be performed jointly with the decision
about where to place the product, as some space (e.g. eye level) is more valuable
than other space. Drèze et al. [2] found that the location is even more important
than the amount of space assigned to each product as long as the amount of
space is sufficient to avoid out-of-stocks. One also has to consider that products
have different sizes and therefore get noticed more or less easily. Furthermore,
interrelations between products exist such that assigning more space to one
product might reduce the demand of another product.

1

2 Chapter 1. Introduction

Since nowadays self-service in supermarkets is common, the challenge of convinc-
ing the customers to buy more profitable products has moved from the salesman
towards the shelf itself (Anderson and Amato [3]). Therefore, the factors con-
cerning the amount of space and the location of products mentioned above have
become more important in the last decades, since obviously a product having
assigned a lot of space on eye level gets more attention by the customers than a
product with only little space on floor level.

Unfortunately, finding the best possible placement for all products manually
consumes much time and only results in subjectively optimal solutions, since it
is only possible to examine a hand full of different possible solutions. However,
optimizing automatically is challenging as well because abstracting from reality
while both keeping it realistic and using available data only is a difficult task.
Furthermore, creating an efficient and precise algorithm is ambitious as the
problem is NP-hard.

In the following I will present FrAPP, a Framework for Automated Product
Placement, which finds close to optimal solutions within an acceptable amount
of time and simulates demand in reality using available data only. Therefore, an
optimization model is defined and solved using a simulated annealing based
hyper-heuristic approach. Here, a set of low-level heuristics modifying shelf
allocations in place is used by a high-level simulated annealing procedure. A
simple user interface allows to specify further requirements for the solution.
Additionally, stock-outs get avoided and solutions are sorted as much as possible
to improve customer satisfaction. Last, the user can directly export the found
solution and give the result to the shelf-stocking staff.

1.2 Terminology

In this section some frequently used terms and concepts of this thesis and the
related literature are introduced. It is intended as a reference and should provide
a better understanding of the context.

Facing

A "facing" describes a product instance located directly on a board being visible
from the front. However, stacking in either height or depth is not considered a
"facing". E.g. if no products are stacked, a facing amount of three simply means
that three product instances are visible to the customer.

Planogram

According to the Oxford Dictionary a planogram is "a diagram or model that
indicates the placement of retail products on shelves in order to maximize sales"

1.2. Terminology 3

[4]. In practice planograms have two purposes: first, during space planning they
enable the retailer to see the whole shelf in a clearly arranged way without having
to actually place products in the real world. Second, it intuitively describes how
the shelf is supposed to look and therefore planograms are used by companies
to pass information about shelves from the planning employee towards the
employee responsible for actually filling the shelf. Apart from a virtual image
additional information like the EAN (European Article Number), the producer,
the physical dimensions and the amount of stacking are included in tabular form.

Space Elasticity

The term space elasticity or own space elasticity can be defined as "the ratio of
relative change in unit sales to relative change in shelf space" (Curhan [5]) or as
"the sensitivity of the customer to the inventory displayed in terms of the quantity
bought" (Hariga et al. [6]). It describes how much the unit sales of a product get
affected by a change in the space allocated to the product. The easiest way to
explain this phenomena is that a customer is more likely to notice a product if
it has more space assigned. Another explanation for the phenomena of space
elasticity "is that when some consumers see one product having more displayed
inventory on the shelf than the competing products, they think that this product
must be more popular and should provide less risk of disappointment, so they
decide to buy this product" (Reyes and Frazier [7]). Here, different products
might be more or less elastic than others. For example fruit and vegetables have
a high value, while textile has a low value (Desmet and Renaudin [8]).

Mostly, when using space elasticity to describe the demand of a product mathe-
matically it is used in an exponential form: spacespace_elasticity. Since the different
space elasticity values are always between 0 and 1, this exponential form ensures
diminishing returns: placing a product twice instead of once leads to a bigger
increase in demand than placing it 15 instead of 14 times, since a product with 14
facings should be noticed by the customer anyway. Generally, the more space
is already assigned to a product, the more likely a customer notices this specific
product and therefore the less a further increase in assigned space affects the
demand.

Cross Space Elasticity

While an increase in space allocated to a product affects its demand positively, it
might also affect the demand of other products. Therefore, cross space elasticity
describes the influence of the space assigned to one product on the unit sales of
another product. This influence can happen in different ways: it can influence
a product positively, negatively or not at all. Complementary products affect
each others sales positively, e.g. if cereals get bought more often because they get
more space assigned, so will milk. If products are substitutes they affect each
other negatively, for example if milk of brand A gets more space and therefore its

4 Chapter 1. Introduction

demand increases the demand of the milk of brand B will decrease. The cross
space elasticity value equals 0 if the products are not related at all, as probably
with toilet paper and pizza.

It should be noted that the cross space elasticity is not always symmetric: as
Coskun [9] points out "an increase in camera sales may affect the battery sales
positively but not vice versa".

In most related literature (e.g. Hwang et al. [10]) significantly smaller values are
used for cross space elasticities than for own space elasticities as they seem to have
less impact on sales. Nevertheless, they express an intuitively understandable
aspect of customers’ purchase behavior and are therefore not negligible.

Shelf vs. Board

Since "shelf" in the English language describes both a collection of levels on which
products are allocated as well as a single unit within such a collection, I will avoid
confusion by using the term "shelf" only to describe the whole collection and
"board" to describe a single level in the following.

Chapter 2
Related Work

This chapter will discuss the different approaches used in the related literature
on the product allocation problem. It is broadly divided into two sub-problems:
first, finding a mathematical optimization model that describes reality formally,
and second, creating an algorithm that solves this optimization model with close
to optimal solutions within a reasonable amount of time.

2.1 Optimization Models

2.1.1 General Approach

Almost all papers on the shelf space allocation problem have a similar overall
approach:

First, a function called demand function is developed, which receives as input
all data about the placement of a product (e.g. amount of facings, location of
placement) and computes the demand for that product in the given placement.
Basically the demand function evaluates how often a product would be sold if it
was placed in the given way. Naturally, the related literature differs strongly in
the concrete design of such a demand function.

Second, an optimization model is designed which uses this demand function.
Therefore, an evaluation function is developed which in most cases is the maxi-
mization of the category gross or net profit, or of the category return on invest-
ment. For example the objective function for the maximization of the category
gross profit would be max

∑
i∈I(spi − pci)Di where I is the set of all products in

the category, spi and pci are the selling price and purchasing cost of product i,
and Di is the demand of product i. Furthermore, a set of constraints is defined

5

6 Chapter 2. Related Work

which has to be satisfied by all valid solutions. An example constraint would be
the physical limitations of a board which may not be exceeded by the products.

Figure 2.1: The communication between database, solving procedure, evaluation
function and demand function.

Figure 2.1 gives an overview of how solutions are created and rated. First,
the user selects the products and boards specifying the problem instance. An
algorithm is invoked upon these parameters and generates a placement. For
estimating the quality of the solution the placement is given to the evaluation
function. In order to rate an allocation the demand and profit margin of each
product are needed. For retrieving the demand the demand function is queried
which gets the placement as a parameter and queries all needed parameters from
the database or user input. Then the profit margins for all products are retrieved
from the database and a rating is computed and returned to the algorithm. The
algorithm then creates the next placement and queries an evaluation value in the
above manner.

2.1.2 A Simple Demand Model Using Space Only

The authors of the paper "An Investigation of Automated Planograms Using a
Simulated Annealing Based Hyper-Heuristic" [11], Bai and Kendall, probably
have one of the easiest optimization models. As a measure of space assigned to
a product they simply use the amount of facings. Furthermore Bai and Kendall
incorporate the space elasticity as an exponent of the amount of facings. Finally
an unspecified scale parameter is used. Taken together the demand function is
Di = αix

βi
i where xi is the amount of facings, αi > 0 is the scale parameter and

0 < βi < 1 is the space elasticity for product i.

2.1. Optimization Models 7

Since the space elasticity parameter is limited to]0, 1[this demand function has
the property of diminishing returns which the authors describe as the decreasing
increase in demand while the allocated space of the product increases. This
property is close to reality for two reasons: first, the percentage gain in space by
adding a further facing decreases and second, the more space a product already
has, the more customers notice it and therefore the less extra demand a further
increase will gain.

The objective function then isMaxP =
∑N

i=1(piDi), whereN denotes the amount
of products, pi is the unit profit of product i and Di is the demand of product i
in the current placement as defined above. So basically the profit achieved by a
product is simply the profit of one unit times the demand for the product (which
is the expected sales amount for that product), and the overall profit is the sum
over all product profits.

As constraints they used the physical limitation in width, i.e. is the sum of product
widths may not exceed the board width, that the facing amount is always an
integer and that given lower and upper bounds on the amount of facings per
product are satisfied. As Murray et al. [1] point out lower bounds can be used
to express and fulfill contracts with manufacturers. Often they pay retailers for
more shelf space as it will increase their profit. Furthermore, according to Yang
[12] upper bounds give the retailer the possibility to phase out products.

It should be noted that Bai and Kendall ignore the depth and height of boards
and products completely. Furthermore, they make the assumption that "retailers
prevent out-of-stock occurrences" and they do not enforce each chosen product
to be displayed which means their model performs product selection.

2.1.3 Considering Location and Inventory Level Effects of Demand

The demand function proposed by Hwang et al. [10] is much more complex
than the one previously presented: it includes a scale parameter, the amount
of facings and the space elasticity in a similar way as the demand function of
Bai and Kendall [11]. However, they also incorporate cross space elasticity and
location effects. This is an important improvement since Drèze et al. [2] found in
an experimental field study that "location had a large impact on sales, whereas
changes in the number of facings allocated to a brand had much less impact as
long as a minimum threshold (to avoid out-of-stocks) was maintained". For the
location effect the authors assigned each board a location value: the board on
the eye level gets the largest value while the worst board, namely the bottom or
top board gets the lowest value of 1. For products being displayed on multiple
levels they computed the location value as the weighted average over all location
values. E.g. a product being displayed twice on a board with location value 2
and once on a board with value 3 gets the location value 2∗2+1∗3

3 = 7
3 . Overall the

demand function is defined as

Di = αix
βi
i

∏N

k 6=i
xβikk loci (2.1)

8 Chapter 2. Related Work

where N is the amount of products, xi is the amount of facings, αi > 0 is the
scale parameter, 0 < βi < 1 is the space elasticity for product i and βik is the cross
space elasticity between products i and k. loci describes the location parameter
and is defined by

loci =

∑M
j=1 xijLoc(j)

xi
(2.2)

where M is the amount of boards, xij is the amount of facings of product i on
board j and Loc(j) is the given location value of board j.

As profit the authors use the gross margin subtracted by the holding costs for
the facings and the backroom, the display expense and the ordering costs. The
objective function then is the maximized overall profit defined as above under
the constraints that the board width is not exceeded, the amount of facings for
each product is within the given minimum and maximum and that the amount
of facings and order quantity are non-negative. However, the number of facings
is not required to be an integer, which is not feasible in practice.

By purchasing a product costumers remove facings, which in turn decreases
demand, as it depends on the amount of facings according to the demand func-
tion. Therefore, Hwang et al. make the reasonable assumption that an employee
reorders the products in a way that the shelf still looks fully stocked and the
missing product is in the back instead, which keeps the demand constant as
long as enough products for the front row are left. The authors call this policy
"full-shelf merchandising". Further assumptions of the authors are that every
product has to be placed which means that no product selection is performed and
that there are "no joint replenishments", instead each product gets replenished
individually.

Apart from the amount of facings and the locations of the facings being decision
variables they also determine the order quantity. Generally, they put a lot of effort
into investigating the ordering process. However, since the authors’ assumption
that the order is delivered instantaneous when the whole backroom is depleted,
which in my eyes is a false assumption, I will not go into much detail here.

2.1.4 Joint Optimization of Price, Orientation and Shelf-Space
Allocation

Murray et al. [1] use one of the most complex demand functions. As a basis
they use an unspecified scaling parameter is used. Instead of using facings
as a measure of space the authors use the facing area instead, which is more
realistic since naturally a bigger product gets noticed more often by customers
than a small one. Furthermore, for aesthetic reasons and better fitting their model
allows products to be placed in different orientations, that is all sides can be used
as the front. Also, the location and space elasticity are considered. A further
interesting aspect of their model is that prices are not assumed fixed, but instead
get computed jointly with the location, orientation and shelf-space allocation.

2.1. Optimization Models 9

Therefore, own price elasticity and cross price elasticity, which are the price
equivalent to own space and cross space elasticity, are considered as well.

Since the orientation is kept flexible, they use the respective measures of the
current orientation for the computation of the facing area and a so called "shelf-
location-orientation quality-adjustment weight". This is the analogon to the
location value in Hwang et al.’s model [10] with the extension that the orientation
is considered as well.

Murray et al. "assume that good logistics are sufficient to eliminate [its] out-of-
stock occurrences". Furthermore they do not select the product assortment but
assume that it has already been determined. Since the authors consider width
and height in their space measurement, stacking is performed. Here, the authors
always stack as many products as possible in the same orientation as the facing
on top of it. However, this is unrealistic since many products cannot be stacked
or are only stacked within limited bounds for aesthetic reasons. In order to
allow products of non-rectangular shape to be stacked and oriented, Murray et al.
use the "least-area rectangular contour that can fit the non-rectangular contour"
instead.

The objective function maximizes the gross profit of the whole category. Valid
solutions must fulfill constraints as the physical limitations in width, depth and
height for all products in the orientation of the placement. The amount of facings
and the price must satisfy given lower and upper bounds and the number of
facings must be an integer.

2.1.5 Further Ideas

Location vs. Space

For the paper "Shelf Management and Space Elasticity" [2], Dréze et al. performed
a long time field study to evaluate the effects on demand caused by shelf space or
location in reality. As a result of the high costs of field experiments in this topic
there are only very few studies like Drèze et al.’s and therefore it is perhaps the
most cited paper of the shelf space allocation topic.

The authors found that location has a much bigger impact on demand than the
amount of space allocated to a product. However, even though the horizontal
position was statistically important, the best horizontal location differed between
categories: some categories preferred the edges and others the center of the
boards. On the vertical axis positions in or slightly below eye level turned out to
be the most valuable. The vertical position seems to be the way more important
one as here an increase in demand between the worst and best position of 39%
could be achieved whereas the horizontal position only lead to a difference of
15% according to the authors.

10 Chapter 2. Related Work

Base Level Allocation

Reyes and Frazier’s model [7] differs from most demand models in some key
aspects:

As a basis for their demand function they use a not further specified parameter
called "base level demand". That is, the space the product would achieve if all
space was assigned in a demand-dependent way. The authors then compute
the space elasticity by dividing the space allocated to a product by the base
level allocation. This quotient then gets modified by a product independent
exponent. The price sensitivity is computed in a similar way: the average price
gets divided by the price of the product and the ratio again gets altered by a
product independent value. So one can clearly see that the authors use one space
elasticity value and one price elasticity value for all products instead of product-
dependent values. Instead, the product dependent effects of the sensitivity factors
are computed using the deviation towards the corresponding average value.

Another interesting aspect is their objective function which has two goals: maxi-
mizing profit and minimizing the deviation in space allocated compared to the
base level allocation. The minimization is performed because the authors argue
that the base level allocation provides the most customer service since it avoids
out-of-stocks as much as possible.

Staple Products

Cox [13] made an experimental study from which he concluded that staple
products like salt and pepper are independent of the shelf space assigned to them.
Therefore, retailers should only assign them as much space as needed to avoid
stockouts.

Block Allocation

Zufryden [14] is one of the only researchers who tried to allocate multiple facings
of products as blocks of products for aesthetic reasons. To achieve this goal and
to be able to perform dynamic programming, which will be explained the next
section, he divided the shelf into a set of slots. Therefore, the author assumes that
the physical dimensions of each product are integer multiples of the dimensions
of the slot.

Maintaining the Grouping of Product Families

The authors Russel and Urban [15] put a lot of consideration into "maintaining
the grouping of product families". For example one could require a sorting by
brand or variety. Therefore, Russel and Urban’s approach keeps "product families
in uniform and complete columns". The authors allow categories to "span several

2.1. Optimization Models 11

shelves as long as they maintain a rectangular physical presence, with small
deviations allowed". Furthermore, they consider both horizontal and vertical
effects on demand.

Random and Preferenced Demand

Anderson and Amato [3] divide the demand into different categories: random
demand and preference demand. Here, random demand arises from customers
without any preference who appear to choose their products randomly. On the
other hand, preference demand emerges from customers preferring a specific set
of products. According to the authors these customers can again be split in two
groups, namely those being loyal towards their preference and would never buy
an alternative product and those who are not as loyal and would switch under
appropriate circumstances.

Unmodified, Modified, Acquired and Stockout Demand

Borin et al. [16] separated demand into four categories: unmodified, modified,
acquired and stockout demand. Unmodified demand is kind of a base demand
that a product would achieve if all products "received identical retail support".
Modified demand describes the effects of space, advertisement, etc. on the sales
of a product. Furthermore, acquired demand describes the demand a product
receives because other products are not in the assortment and therefore customers
switch to this product. Finally, stockout demand is the demand products "receive
from the items which have temporarily stocked out".

Reordering

Urban [17] investigated the reordering process. He was the first researcher who
considered the problem that facings deplete as products are sold and therefore
the demand decreases. In his study he considers both backroom and showroom
and assumed that the showroom is kept fully stocked as long as it can be refilled
from the backroom. Since he wanted to optimize the net profit, part of his study is
to find the perfect reordering point as to reduce ordering costs while not loosing
too much demand.

Flexible Shelf Height

Apart from offering an excellent overview of the related literature on the shelf
space allocation problem, Coskun’s [9] optimization model allows flexible board
heights "to maximize the shelf space utilization". In his evaluation it turned
out that boards with high location values tend to become bigger due to the
adjustments of board heights.

12 Chapter 2. Related Work

Freshness

Bai and Kendall [18] argue that for fresh products the demand is not constant
over time, but instead decreases as products loose their freshness. Therefore, they
develop a demand function considering the amount of facings and the freshness
condition of the product.

Showroom and Backroom Inventory

Hariga et al.’s [6] approach is interesting as they make a clear distinction between
showroom and backroom inventory and investigate products being displayed in
multiple locations within the store. Furthermore, their model performs product
selection and inventory replenishments. They maximize the net profit which
incorporates investment, storage and display cost.

Advertisement and Distribution

Urban’s approach [19] is interesting as he includes advertisement and distribution
in his demand function. He even incorporates own and cross distribution and
advertisement elasticities. Although these parameters undeniably represent
aspects of reality, it seems unfeasible to access such data.

2.2 Solving Procedures

This section describes the different approaches used to solve the above optimiza-
tion models. It is important to note that due to the NP-hardness of the shelf
space allocation problem it is not possible to brute force solutions for medium
to big-sized problems. Therefore, the following algorithms try to find a close
to optimal solution within a reasonable amount of time without guaranteeing
optimality.

2.2.1 MINLP-Solver

After determining their optimization model as described in 2.1.4, Murray et al.
[1] noted that the objective function is nonlinear and that there exist both integer
and continuous variables (the amount of facings is constrained to be an integer,
while e.g. the prices and physical units are continuous variables). Therefore, it
can be classified as a mixed integer nonlinear programming problem (MINLP).
Furthermore, the objective function as the authors defined it is non-convex, which
leads to a big problem: according to Bussieck and Pruessner [20] no method is
known which guarantees to solve non-convex MINLPs to optimality.

However, even though optimality is not guaranteed solvers for non-convex
MINLPs exist. The authors used the "Basic Open Source Nonlinear Mixed IN-

2.2. Solving Procedures 13

teger programming" (BONMIN) C++ open source code which is available from
the COIN-OR (COmputational INfrastructure for Operations Research) website
(https://projects.coin-or.org/Bonmin). Due to the non-convexity of
the problem the authors argued that the diverse BONMIN algorithms serve as a
heuristic only. However, computational features are included which "significantly
improve the quality of solutions even for non-convex problems" [1].

BONMIN offers a set of algorithms for minimizing MINLPs:

"B-BB" is a branch and bound algorithm which, as the name suggests, iteratively
branches the problem in sub-problems and achieves new bounds. Specifically,
it solves the continuous relaxations of the problem, which itself is only a non-
linear programming problem (NLP) and therefore easier to solve. Whenever a
solution to the NLP is also a solution for the original MINLP (this means the
integer variables are indeed integers), the solution is compared to the current
best solution and if it is smaller it becomes the new lower bound. On the contrary,
if the solution of the NLP is not a solution of the MINLP, there are two further
cases: first, if the solution has a lower value than the current lower bound, it
cannot be the optimal solution since a solution of the NLP is a upper bound
on the MINLP, and therefore the node can be skipped. Second, if the solution
is not bigger than the current upper bound the search-node gets split into two
sub-nodes, one which requires that the integer variables are at most as high
as the rounded down value of the corresponding continuous variable and one
which requires the integer variable to be at least as big as the rounded up integer
variable. At these new nodes the corresponding NLPs are solved and the process
starts anew. Here, each sub-node has smaller allowed intervals than his parent.
For more details on the implemented branch and bound technique the reader is
referred to Bonami et al. (2011) [21].

"B-OA" is an outer approximation algorithm, which solves the problem by alter-
natively solving two easier sub-problems: if the integer variables of the MINLP
get fixed, it reduces to a nonlinear programming problem (NLP) since there are
only continuous variables. Solving this NLP results in an upper bound x, since it
is a feasible solution for the MINLP as well. Furthermore, linearizing all functions
of the original MINLP around the solution x results in a mixed integer linear
programming problem (MILP) since the functions are linear. Solutions of this
easier MILP can be seen as a lower bound for convex functions. Iterating these
steps until the lower and upper bounds coincide results in optimized solutions
for the original MINLP. For more information on the implemented algorithm in
BONMIN the reader is referred to Bonami et al. (2008) [22].

Apart from the above two BONMIN offers many other algorithms, e.g. the
"B-Hyb" which is a hybrid of and outer-approximation and a branch and-cut-
algorithm, however I will not explain every algorithm in detail here.

Even though the creators of BONMIN "strongly recommend using B-BB (the
outer-approximation algorithms have not been tailored to treat nonconvex prob-
lems at this point)" in their users’ manual [23], Murray et al. [1] used not only

https://projects.coin-or.org/Bonmin

14 Chapter 2. Related Work

the "B-BB" algorithm, but also two of the outer approximation based algorithms
"B-OA" and "B-Hyb". However, in their numerical experiments both outer ap-
proximation based algorithms outperformed the branch and bound algorithm
since they were way more effective.

Apart from Murray et al. many other researchers on the space allocation problem
used available solvers to evaluate their models. For example Coskun [9] used
an optimization modeling language called GAMS and experimented with three
solvers, the above mentioned BONMIN, BARON and KNITRO; Hariga et al.
[6] solved their MINLP using the LINGO software and Russel and Urban [15]
modeled their discrete model in the ILOG OPL modeling language and solved
using the CPLEX 10.1 solver.

2.2.2 Dynamic Programming

As mentioned in 2.1.5, Zufryden [14] divides the shelves into equally sized "slots"
in order to allocate space in a dynamic programming approach. Therefore, he
assumes that the width of each product is an integer multiple of the width of a
slot and analogously that the height of a product is an integer multiple of the
height of a slot. In his approach the placement of each product item is considered
as a "stage". For the dynamic programming the recursive relation used states
that the best way to allocate a particular product is the maximum possible sum
of the profit received by allocating x slots to the product and the best way to
allocate the remaining slots by all products before the current one (recursion). To
explain this recursive relation better I will pseudo-formalize it in a simple way
by not introducing too many variables and abstracting from unneeded detail.
However, the reader is referred to the original paper for a more precise and
detailed formalization.

All products are numbered: j = 1, 2, ..., N , where N is the amount of products
that should be placed. The recursive relation used in the author’s dynamic
programming approach is:
BestAllocationj(slotsLeft) =
Maxx[profitByAllocatingXSlotsToProdJ+BestAllocationj−1(slotsLeft−x)],
where slotsLeft is the amount of slots being empty. Naturally, the base case
is BaseAllocation0(y) = 0 ∀y, which means that allocating the nonexistent
product 0 results in no profit, no matter how many slots are left. In the above
equation the maximization is only performed over valid solutions, meaning that
constraint violating allocations do not count.

This recursive relation can now be used by starting with the last product N and
the amount of overall slots available as slotsLeft. Naturally, the intermediate
results have to be memorized to achieve dynamic programming and therefore
reduce computation time dramatically.

Even though Zufryden’s approach works for his specific problem it has serious
limitations: first, the assumption that all products must be sized as an integer

2.2. Solving Procedures 15

multiple of the slot size is only applicable if one defines slots as 1mm x 1mm,
since in reality products are not integer multiples in size of each other. Making the
slots too tiny however results in enormous computation time which destroys the
practicability of the approach. Second, the approach in the current form does not
work for more complex demand functions. For example this recursive relation
cannot handle locations and I doubt that any recursive relation for simultaneously
considering locations and space can be found.

2.2.3 Genetic Algorithm

Hwang et al. [10] proposed a genetic algorithm to solve their model as defined
in 2.1.3 by simulating the evolution process. Here, the first step is to define an
encoding for a fully filled shelf, which defines a chromosome. Then the authors
start with the initialization of the algorithm: an initial population of chromosomes
is generated randomly as can be seen in figure 2.2.

Figure 2.2: An exemplary initial population for the genetic algorithm.1

The next step is called crossover: here, two chromosomes (which are the encoding
of shelves) have to be combined to one new offspring shelf. Therefore, the authors
used the "one-cut-point" technique which simply uses a random cut-point at
which the two chromosomes are split and then combines the left half of one
chromosome with the right part of the other. This basically relates to taking a
point in the shelf and merging the products in the top-left part of that point from
one parent shelf and the products from the bottom-right part of the cut-point
from the other parent shelf together. In their algorithm "25% of chromosomes
undergo crossover". Figure 2.3 shows a simple example where the left and right
halves of the shelves are merged.

1Here and in the following the image of the empty shelf is taken from http://www.
photosinbox.com/download/empty-wooden-shelf.jpg

http://www.photosinbox.com/download/empty-wooden-shelf.jpg
http://www.photosinbox.com/download/empty-wooden-shelf.jpg

16 Chapter 2. Related Work

Figure 2.3: Crossover in the genetic algorithm by concatenating left and right
halves of the parent shelves.

Apart from crossover also mutation is used to produce offspring. Here, genes
are simply changed within some chromosomes. This can be illustrated as e.g.
changing a facing in the shelf. For an example see the facings at the red arrows in
figure 2.4 in comparison to figure 2.3. In the authors’ algorithm 1% of genes get
altered. Generally, mutation is used to gain more diversity.

Figure 2.4: Mutation in the genetic algorithm by changing random facings.

Naturally, the parent generation dies as evolution is simulated. This can be seen
in figure 2.5.

2.2. Solving Procedures 17

Figure 2.5: Parent generation dies in the genetic algorithm.

One problem Hwang et al. had to face is that their model defines a constrained
optimization. However, since the generation of the initial population as well as
the production of offspring by crossover or mutation is using a lot of randomness,
it can easily happen that chromosomes violate these constraints. Now one could
remove all such constraint-violating chromosomes from the population, however,
the authors decided to use a "penalizing strategy" instead. That is, depending on
the degree of constraint violation the chromosomes get penalized more or less in
the following fitness test. If we assume that the maximum facing amount of the
red product in the example is three, the right offspring shelf in figure 2.6 would
receive a penalty.

Figure 2.6: Constraint violating solutions get a penalty in the genetic algorithm.
Assume for example the maximum facing amount of the red product is three.

18 Chapter 2. Related Work

To perform evolution, survival of the fittest has to be simulated. Therefore,
a fitness function is defined which simply is the total profit achieved by the
shelf. As mentioned above, constraint violating chromosomes get a penalty here,
meaning that the chromosome is treated as if its corresponding shelf would result
in less profit.

The new generation is build by choosing offsprings with a probability which is
proportional to the fitness value (namely the profit). It should be noted that in
order to "diversify the population" the fitness values have to be scaled: the authors
determined the scaled fitness value by dividing the normal fitness value by the
sum of the fitness values of all chromosomes (and including a predetermined
scaling factor). An exemplary survival of the fittest process can be seen in figure
2.7.

Figure 2.7: Survival of the fittest in the genetic algorithm: bad solutions are
removed with high probability.

Now this whole procedure is repeated with the new generation instead of the
initial population. The algorithm terminates after some stopping criteria (e.g.
amount of iterations) and returns the best encountered solution.

2.2.4 Simulated Annealing Based Hyper-Heuristic

Bai and Kendall’s approach [11] to optimize their model as defined in 2.1.2 is
called "simulated annealing based hyper-heuristic". Here, I will first explain the
advantages of hyper-heuristics and afterwards come to the algorithm itself.

According to the authors meta heuristics can be applied on many problems
and perform well on specific problems. However, "once the problem changes
(even slightly), the performance of the already developed meta-heuristic may
decrease dramatically for the new problem". In order to adapt to the new problem
parameter tuning is needed. Furthermore, according to the "No Free Lunch

2.2. Solving Procedures 19

Theorem" there cannot be an algorithm outperforming all others in all problems
[24]. If an algorithm outperforms all others on a specific problem, it will be
beaten on another problem. Therefore, Bai and Kendall argue that "a good way
to raise the generality of meta-heuristics is to apply different (meta-)heuristics
at different times of the search", which is called "hyper-heuristics" and "broadly
describes the process of using (meta-)heuristics to choose (meta-)heuristics to
solve the problem in hand" [25]. To put it in a nutshell, as Bai and Kendall explain
it the hyper-heuristic approach starts from an initial soluiton and uses a so called
high level heuristic to guide the search and select amongst a set of low level
heuristics which then modify the solution. Here, the low level heuristics have
to be designed for the specific problem, while the high level heuristic can be
used for different problems as it only "searches over the heuristic space" [11].
Therefore, exchanging the low level heuristics is sufficient to reuse the approach
for another problem.

As a high level heuristic Bai and Kendall use a simulated annealing algorithm.
Simulated annealing is a simulation of a cooling process in physics. The algo-
rithm starts with an initial but probably bad solution which will be optimized.
Therefore, neighbors of the solution get generated repeatedly and compared to
the current solution. If the neighbors objective value is higher than the objective
value of the current solution the algorithm transfers to it. However, to avoid
getting stuck in local optima it is possible to transfer to worse solutions as well.
Therefore, a parameter called temperature is introduced: since the algorithm
is called simulated annealing it has an initially high value and gets reduced
according to a temperature function in each iteration. Now this temperature is
used if the objective value of the neighbor is worse than the value of the cur-
rent solution. Here, Bai and Kendall used the Metropolis probability defined as
exp(−δ/t) where δ is the difference in objective value between the two solutions
and t is the temperature. This means that weather or not the algorithm transfers
to a worse solution depends on two factors: how much worse is the solution
and how low is the temperature. Since the temperature gets decreased over and
over it is more likely to deteriorate in the beginning of the search. The cooler the
temperature gets the less likely it is to worsen. Furthermore, it is always more
likely to transfer to a worse solution if its difference in objective value towards
the current optimum is small.

Simulated annealing based hyper-heuristic now uses the above simulated anneal-
ing as a high level heuristic. However, instead of generating a neighbor in the
same way in each iteration simulated annealing based hyper-heuristic chooses
a heuristic out of a set of low level heuristics which all create neighbors in a
different way. This allows the algorithm to adapt to the specific problem. Overall
Bai and Kendall implemented 12 different low level heuristics such as adding a
random facing, deleting a random facing, the deletion of one facing of a product
and filling the gap with as many facings as fit of another product, etc. The pseudo
code of the simulated annealing based hyper-heuristic can be seen in algorithm 1.

20 Chapter 2. Related Work

Algorithm 1 Simulated Annealing Based Hyper-Heuristic [11]
Select an initial solution s0;
repeat

Randomly select a heuristic h ∈ H ;
iteration_count = 0;
repeat
iteration_count++;
Applying h to s0, get a new solution s1;
δ = f(s1)− f(s0);
if (δ ≥ 0) then
s0 = s1;

else
Generate a random x uniformly in the range (0, 1);
if x < exp(δ/t) then s0 = s1;

end if
until iteration_count = nrep;
set t = temperatureFunction(t);

until the stopping criteria is satisfied

Here, f(s) is the objective function, which in the case of the shelf space allocation
problem mostly is the overall achieved profit. Furthermore, nrep simply is a
predefined number for the amount of iterations the algorithm should perform
before updating the temperature.

As a temperature function the authors used Lundy and Mees’s [26] cooling
schedule which is defined as t → t/(1 + βt). Bai and Kendall defined β =
(ts−tf)Taverage
Tallowedtstf

where ts and tf are the starting and final temperature and Taverage
and Tallowed are the average time needed for one iteration and the time allowed
for the whole search.

Bai and Kendall experimented with two different ways of determining the initial
temperature. The first was to set it to 0.3 times the objective value of the initial
solution while the other was a lot more complicated: from the initial solution
neighbors were generated and the maximum difference δmax in objective value
between the initial solution and the neighbors was computed. Then in order
to accept 85% of bad moves in the beginning the starting temperature was set
to −δmax/ln(0.85). However, as their evaluation showed, the algorithm is in-
sensitive towards the initial temperature and therefore it did not matter which
approach was used to determine ts.

Simulated annealing algorithms normally terminate when the temperature be-
comes too low. Here, the authors used 0.1 as the final temperature.

2.3. Comparison with FrAPP 21

2.3 Comparison with FrAPP

Table 2.1 shows the factors included in the three most related papers in compari-
son to FrAPP’s demand function.

Model Basis Space Measurement Price Space Elast.
Bai and Kendall [11] Scale Parameter Amount of Facings No Yes
Hwang et al. [10] Scale Parameter Amount of Facings No Yes
Murray et al. [1] Scale Parameter Facing Area Yes Yes
FrAPP Worst Allocation Demand Facing Area No Yes

Model Cross Effects Vert. Pos. Orientation Trends Stacking
Bai and Kendall [11] No No No No No
Hwang et al. [10] Cross Space El. Yes No No Depth
Murray et al. [1] No Yes Yes No Height
FrAPP Cr. Sp. Loc. El. Yes No Yes Both

Table 2.1: Tables comparing the demand factors of the three most related papers
and FrAPP.

A basis is needed to express the fact that some products are sold more often than
others even if they are placed badly. Therefore, all related works I presented here
included a scale parameter. However, it was not clearly defined where this scale
factor comes from and if it is a fair measurement. Therefore, FrAPP uses the so
called worst allocation demand which will be described in the next chapter.

As the amount of facings ignores the fact that bigger products are more likely
to be seen than smaller products, Murray et al. [1] used the facing area as a
measurement of space. This is a clear improvement compared to the other two
presented approaches which is why FrAPP also uses the facing area.

Murray et al. [1] also had the price as a decision variable which of course offered
more flexibility. However, in chain stores the price should not differ from store
to store but the allocation might be different due to the physical constraints of
the different buildings. Therefore, it seems unrealistic to determine the price
depending on the product allocation.

All three papers included the space elasticity, while only Hwang et al. [10]
used the cross space elasticity. Even though cross space effects might not be as
important as other factors, like the vertical position, they reflect an intuitively
understandable aspect of reality. Therefore, FrAPP uses an extension of the
cross space elasticity which also includes interrelations of products due to better
positioning and is therefore superior to the simple cross space elasticity.

Dréze et al. [2] showed that the vertical position is more important than the
amount of space assigned to a product. However, Bai and Kendall’s model [11]
does not include location effects which is the biggest disadvantage of their model
compared to the other two.

22 Chapter 2. Related Work

Murray et al. [1] used the orientation of products as a decision variable. However,
since products are designed with a clearly defined front, FrAPP and the other
two presented approaches do not include different orientations in their respective
models.

In FrAPP users can also enter expected trends due to out-of-store effects into the
model. This will be described in more detail in the next chapter.

While Bai and Kendall [11] did not perform any stacking, Hwang et al. [10]
stacked products in depth as a storage to refill from when facings get sold and to
be able to compute the perfect reordering point. Murray et al. [1] always stacked
as many products as fit on top of each other to further increase the facing area.
Even though this is not done for all product categories in reality for aesthetic
reasons, it is a good approach to increase the demand. FrAPP performs both,
stacking in depth and height, to compute the facing area and avoid stock-outs.

Detailed explanations leading to this choice of demand factors and their formal-
ization can be found in the next chapter.

Chapter 3
Mathematical Model

In this chapter a mathematical model is developed, with the purpose to cap-
ture the sales of a shelf as realistic as possible. However, at the same time the
model should only use parameters or data which can be achieved or at least
approximated.

3.1 Demand Function

The first step in computing the overall profit of a shelf is to be able to capture
demand. That is, given a placement, compute how much each product would
be sold if the market would use the placement in reality. Figure 3.1 gives an
overview over the factors influencing demand: the position a product is placed
in as well as the amount of space it covers are the key aspects of demand as they
determine how easily a customer notices the product. Furthermore, elasticities
such as the space elasticity are used to describe intuitive aspects of reality. Last, a
scale parameter is needed to express the fact that some products are more popular
than others even if placed identically.

3.1.1 Demand Parameters

In this section FrAPP’s concrete specifications of the factors of figure 3.1 will be
explained and motivated. Furthermore, it is explained which of these parameters
are adopted from related works and where a different approach is used.

23

24 Chapter 3. Mathematical Model

Figure 3.1: Overview on the factors influencing demand.

Position

Dréze et al. [2] pointed out that the vertical position of a product is even more
important than the space allocated to a product, therefore, I will use this factor
in my demand function. Like the authors I assign location values to the boards
depending on their distance to eye level: the lowest board gets a value of one,
then the values are increasing until eye level is reached and in the following
location values are decreasing again. If a product is allocated on multiple boards
the weighted average over all boards it is placed on is used (analogously to
Hwang et al. [10]). As an example consider a product being placed once on the
lowest board with location value one and twice on a board with location value
1.5 as can be seen in figure 3.2. For this specific scenario the location value is
1∗1+2∗1.5

3 = 4
3 .

Figure 3.2: Example for computing the location value for products located on
multiple boards.

Even though the vertical position is integrated in FrAPP’s demand function, the
horizontal aspect is ignored because the best horizontal position differs from
category to category. In some categories the middle position and in others the
border positions achieved more demand (Dréze et al. [2]). Therefore, unless
data for each category exists, the horizontal position cannot be included in the
demand function. Furthermore, since the horizontal position influences demand
significantly less than the vertical position does (Dréze et al. [2]) the more
important aspect of reality is captured in FrAPP’s demand function.

3.1. Demand Function 25

Amount of Space: Area

Instead of simply using the amount of facings as a measurement of space I use
Murray et al.’s [1] approach which is the area facing front. Naturally, a bigger
product gets noticed more easily than a small product, which is ignored by the
amount of facings. However, since products cannot be expected to be equally
sized even if they are in the same category (e.g. chips and peanuts) the facing
area is the superior measurement.

Elasticities

Naturally, the space elasticity is incorporated into FrAPP’s demand function as it
represents diminishing returns (see section 1.2.3) and is therefore important to
automatically prevent products from being displayed exaggeratedly often.

Even though cross space elasticity is hard to capture and influencing demand
less than space elasticity, it still describes an important aspect of reality and
should therefore be integrated into the demand function. Without cross space
elasticity, the highly competitive interrelations would be ignored completely
which abstracts too far away from reality.

Scale Parameter

Some products are more popular than others and get sold more often even if they
are placed in exactly the same way. For this reason almost every related paper
incorporated a product dependent scale parameter in their demand function.
However, no one specified how this scale parameter is achieved.

I will use the demand in the worst possible placement as a basis. That is, the prod-
uct has exactly one facing on the lowest board directly above the ground. This
worst possible allocation is a good scale parameter as it treats all products equally
and ignores unbalances like differently sized products or better positioning of
products. In contrast, if the market share was taken as a scale parameter, it is not
taken into account that more popular items often already have better locations
than less popular ones which additionally increases the demand. Therefore, the
market share achieved by better positioning and higher amount of space should
not influence the scale parameter.

The reason I chose the worst possible placement as a scale parameter instead of
any other fair measurement having the same amount of space on each board is
that one can simply multiply a factor bigger than one if the product is placed on a
better level or if the product is placed more often. Furthermore, one should note
that the worst allocation demand considers local differences in sales of products,
which is another advantage over the market share.

26 Chapter 3. Mathematical Model

Trends

There exist many factors influencing demand outside the store, like advertise-
ment, price change, weather (influencing the sales of grill meat or umbrellas),
etc. However, those are not incorporated directly as this thesis’ focus is on the
influences of indoor product allocation. Also, these factors are extremely hard
to capture if not completely unpredictable. Nevertheless, a factor called trend
is incorporated in FrAPP’s demand function to allow retailers expecting e.g. a
5% increase in demand for a specific product to insert this expectation into the
program as another scale parameter for the demand of the product.

3.1.2 Formalization

I will now formalize the demand function taking into account all previously
mentioned demand parameters.

The following notation will be used:

• vi worst allocation demand

• αi space elasticity of product i, value between 0 and 1

• βji cross space elasticity from product j to product i, value between -1 and 1

• Di demand of product i

• I set of all products i

• B set of all boards b

• wi width of product i

• Wb width of board b

• hi height of product i

• Hb height of board b

• di depth of product i

• Db depth of board b

• fib facings of product i on board b

• Locb rating of the location of board b

• Trendi known change in sells of product i independent of the product
allocation (given as a float, not in %)

3.1. Demand Function 27

The demand function is designed as follows:

The maximum possible stacking for product i on board b is

bHb

hi
c (3.1)

which is the height of the board divided by the height of the product. It gets
rounded down such that the stacking is always an integer and fits on the board.

The total amount of products facing front of product i on a board b is given by
the multiplication of facings on the board and their stacking. The overall amount
of product instances in the front for product i is then simply defined by the sum
over the products facing front on all individual boards:

Fi =
∑
b∈B

fibb
Hb

hi
c (3.2)

Naturally, instead of using the maximum possible stacking users can also enter a
product-specific stacking amount.

As mentioned above, the location value for product i gets computed as the
weighted average of the location values on which it is placed:

LocV ali =

∑
b∈B

fibbHb
hi
cLocb

Fi
(3.3)

Note that the above formula uses the products facing front and not simply the
amount of facings on the individual boards. This is logical as products being
stacked in height are more conspicuous than non-stacked products and therefore
achieve a higher visual weight.

The facing area of product i gets computed by multiplying the amount of products
facing front with the width and height of an individual product:

Areai = wihiFi (3.4)

Including the space elasticity leads to

Areaαi
i = (wihiFi)

αi (3.5)

The cross space elasticity from product j to product i is the size of the facing area
of product j to the power of the cross space elasticity value from j to i. Therefore,
the overall effect of all products on product i can be expressed as

∏
j∈I
j 6=i

Area
βji
j =

∏
j∈I
j 6=i

(wjhjFj)
βji (3.6)

28 Chapter 3. Mathematical Model

Taken together, the overall demand function is

Di = vi ∗ Trendi ∗Areaαi
i ∗ LocV ali ∗

∏
j∈I
j 6=i

Area
βji
j (3.7)

Capturing vi is now pretty simple: if one takes the current placement and the
current sales for each product as demand, everything except vi in the above
formula is known. Therefore, it can simply be solved for vi which shows that no
additional information is needed to get the worst allocation value.

With the computed worst allocation value, given price, trend as well as product
and board dimensions, it is now possible to compute the demand for any product
allocation.

3.1.3 Improved Demand Function

It seems logical that not only the space assigned to one product influences the
demand of another product, but also the position. E.g. a facing of fruit tea of
brand A on eye level should influence the demand of fruit tea of brand B more
negatively than one on ground level. Since the position has a positive effect
on the sales of a product [2], better positions of related products should also
have a negative impact on demand as it leads to a higher probability that the
worse positioned product gets substituted by the other. Therefore, one should
incorporate this fact in above demand function 3.7. Since both space and location
assigned to one product influence the sales of another product, a parameter called
"cross space location elasticity" between two products is needed. Even though
this fact was ignored completely in the related literature, it should be even more
important than the simple cross space elasticity as the position of a product has a
higher impact on sales than the space assigned to a product [2].

Therefore, it is incorporated in the above demand function in the following
way: Instead of multiplying the demand of a product by the space of each other
product to the power of the cross space elasticity it should now be multiplied by
the product of space and location of each other product to the power of this new
cross space location elasticity parameter between the two products. Formally:

D′i = vi ∗ Trendi ∗Areaαi
i ∗ LocV ali ∗

∏
j∈I
j 6=i

(Areaj ∗ LocV alj)γji (3.8)

where γji is the cross space location elasticity from product j to product i.

It should be noted that this cross space location elasticity is not symmetric mean-
ing that γji = γij does not necessarily hold for the same reasons as cross space
elasticity is not symmetric.

Even though it sounds completely plausible that the position of one product
can influence the demand of another, the existence of the cross space location

3.2. Optimization Model 29

elasticity is not proven by a field study yet. Nevertheless, due to reasonable
arguments as the above, it is included into FrAPP’s demand function.

It should be noted that the cross space location elasticity can in theory be both
positive and negative, using the same arguments as for cross space elasticity:
positive values describe scenarios like sales in milk leading to an increase in the
sales of muesli, while negative values describe the negative impact on sales on
fruit tea of brand A caused by a better position and more assigned space to fruit
tea of brand B.

3.2 Optimization Model

Using demand function 3.8 it is now possible to define the optimization model.

3.2.1 Profit

FrAPP maximizes the profit defined as selling price - purchase price - taxes,
which is basically the gross profit minus taxes. The taxes must be included since
in Germany taxes differ between product categories. Staple food like meat have
only 7% while drinks have 19% taxes.

Naturally, one could maximize the net profit as many related papers do. However,
data like cleaning costs, transportation costs, etc. is needed for the net profit but
was not available for my thesis. Furthermore, and more importantly, it would
only lead to different solutions than the gross profit if the cost aspects divide
differently among the products. Otherwise, the overall net profit would be less
than the gross profit but since the costs would split equally among the products
the proportions would stay the same and therefore the placement would not be
influenced. For this reason, considering the net profit is only superior if the costs
get split differently between products (e.g. transportation costs, carrying costs).

3.2.2 Requirements

Valid solutions must naturally fulfill some requirements:

Bounds on Facing Amount

The retailer may define lower and upper bounds on the facing amount of each
product (like e.g. Coskun [9]). Minimal facing amounts can for example be used
to ensure that the own brand is placed at least x times even if this is not lucrative.
However, since the retailer might gain from the production of these products as
well, it could still be cost-efficient which is why this possibility should be given.

30 Chapter 3. Mathematical Model

No Stock-Outs

Furthermore, FrAPP prohibits solutions where stock-outs are possible, since they
result in lost sales. Even solutions where products in the front row (facings +
stacking) disappear are eliminated. Since I assume full-space merchandising (like
Hwang et al. [10]) products in the front row can only disappear if all products
behind were already sold, otherwise a salesmen would refill the front. However,
since the facing area is part of the demand function, disappearing front row
products lead to a decrease in demand and should therefore be avoided. FrAPP
assumes that products are delivered in fixed intervals (e.g. once a week). For the
above reasons, only solutions having at least as many products behind the front
as the overall demand in that replenishment interval are allowed.

Connection Between Products

The optimization model requires of all solutions to fulfill the following product
connection criteria: all instances of a product must be connected within a shelf.
This does not enforce uniform columns or blocks, however, it rules out irritating
solutions where product instances can be found in multiple locations in a shelf
without those being connected. Figure 3.3 shows an example to clarify the
product connectivity criteria.

Figure 3.3: The left image shows a valid solution because all product instances
are connected for both products, while this is not the case in the right placement.

In the left image the brownies span over multiple boards. However, since for
both products it holds that all product instances are connected, it is a valid
solution. On the right the "QKies" are valid as well, since all instances build one
connected component. However, since the two bottom left brownie instances are
not connected to the three top right instances the solution as a whole becomes
invalid. Placements as the right one are prohibited to avoid customer irritation
and an untidy overall appearance of the store.

A stronger limitation like enforcing products to build complete blocks reduces the
solution space tremendously, which might lead to less profitable overall solutions.
In contrast, allowing all combinations leads to a messy store appearance which
is not customer friendly. Therefore, this approach is a good compromise be-
tween eliminating possibly optimal solutions and producing confusing product
allocations.

3.2. Optimization Model 31

Integer Valued Facing Amount

Last, the amount of facings must be a positive integer, otherwise it would not
be applicable in practice. The requirement that it must be positive indicates that
FrAPP does not perform product selection, since each product must be placed.
However, since I assume that the retailer already selected all products in advance
it makes sense to display each product at least once.

Comparison to Related Papers

Model Profit Stock-Outs Facing Amount Product Selection
Bai and Kendall [11] Net P. Not Considered Integer Yes
Hwang et al. [10] Net P. Partly Considered Continuous No
Murray et al. [1] Gross P. Not Considered Integer No
FrAPP Gross P. - Taxes Considered Integer No

Table 3.1: Comparison of FrAPP’s optimization model to the three most related
papers.

As table 3.1 shows, Hwang et al. [10] "partly considered" stock-outs, since they
computed the best reordering point to avoid stock-outs or even a reduction in
demand due to the depletion of front row products. However, since the authors
make the unrealistic assumption that replenishment is instantaneous, it can only
be considered a "partly" avoidance of stock-outs.

Bai and Kendall’s model [11] allowed products to have a facing amount of
zero, which enables their solver to perform product selection. However, in
general product selection is not as simple since excluding a product from the
assortment might transfer its sales to a substitute product within the assortment.
Furthermore, simply allowing the amount of facings to be zero might lead to
solutions where whole categories are not placed due to their unprofitability.
Even though in this way the shelf might produce more income, missing a whole
product category can motivate customers to switch the store [27]. For the above
reasons, the planning staff is expected to perform product selection instead of the
planning tool.

Coskun [9] used flexible board heights in his optimization model. Even though
his results were quite interesting, usually shelf boards are not completely flexible
in height for aesthetic reasons. Having differently arranged boards in each shelf
leads to an irritating overall impression. Therefore, FrAPP assumes fixed board
heights.

Zufryden [14] incorporated product blocks in his optimization model to allow
e.g. bottles to be aligned as six-packs. However, a grouping of product is usually
considered as an individual product with an own article number in the databases,
which makes Zufryden’s consideration redundant.

32 Chapter 3. Mathematical Model

Furthermore, even though Cox [13] showed that positioning and space assign-
ment of staple products does not influence the demand, FrAPP does not consider
them separately. First, the data provided does not support easy distinction of
staple products and second, treating them differently would always lead to so-
lutions having salt, etc. placed on the lowest board and having assigned just
enough space to not stock-out. However, this seems highly customer-unfriendly
and should therefore be avoided.

Last, it should be noted that the model does not explicitly minimize empty
showroom. However, a maximization of profit will always minimize empty areas
because they do not produce income.

3.2.3 Formalization

Apart from the above notation some further abbreviations are needed to formalize
the optimization model:

• spi selling price of product i

• ppi purchasing cost of product i

• ti taxes on product i

• ri replenishment interval for product i

• Fimin lower bound on facings of product i

• Fimax upper bound on facings of product i

• Fi total amount of facings of product i

The optimization model can now be defined as:

max
∑
i∈I

(spi − ppi − ti)D′i (3.9)

such that the following holds:∑
i∈I

wifib ≤Wb ∀b ∈ B (3.10)

Fimin ≤ Fi ≤ Fimax ∀i ∈ I (3.11)

D′iri ≤
∑
b∈B

fibb
Hb

hi
cbTb
ti
c − fib ∗ b

Hb

hi
c ∀i ∈ I (3.12)

productsConnected(i) = true ∀i ∈ I (3.13)

Fi =
∑
b∈B

fib ∈ N+ ∀i ∈ I (3.14)

3.2. Optimization Model 33

Here, equation 3.10 requires the summed up product width to be less or equal
to the board width. Naturally, the depth and height of boards should not be
exceeded either, however, since only as many products as fit are stacked in depth
or height these requirements are met automatically. Naturally, the model assumes
that the dimensions of a board are large enough to accommodate at least one
product instance, which is reasonable as in the supermarket environment boards
usually are way larger than products. Formula 3.11 enforces the amount of
facings per product to be in the given bounds. Equation 3.12 prohibits stock-outs
or even lower sales because of disappearing facings. That is, the expected sales
in a replenishment interval, namely the demand multiplied by the amount of
days until the shelf is refilled, cannot extend all stocked products minus the front
row products as discussed above. Furthermore, 3.13 requires that the product
connectivity criteria is fulfilled for all products. As formalizing this properly
involves building a graph of products and therefore leads to a tremendous
amount of new variables which in term complicates the optimization model, a
boolean oracle called "productsConnected" is introduced instead. The algorithm
representing this oracle by checking the product connectivity is described in
detail in section 4.4.3. Last, equation 3.14 simply enforces that the amount of
facings per product is a positive integer.

34 Chapter 3. Mathematical Model

Chapter 4
Optimization Algorithm

4.1 General Algorithm

As an optimization algorithm I chose a modified version of Bai and Kendall’s
[11] simulated annealing based hyper-heuristic. The main reason for this is
the product connectivity. E.g. the genetic algorithm creates new solutions by
pairing existing solutions. However, pairing two placements such that the result-
ing placement satisfies the product connectivity criteria with high probability
seems unfeasible. As another example performing mathematical optimization
using MINLP solvers requires that all conditions that have to be satisfied can
be expressed mathematically. However, this formalization is hard as it requires
introducing a huge amount of new variables needed for the product graph upon
which the connectivity check is performed. Furthermore, meta heuristics cannot
find optimal solutions on all problem instances as the factors differ too strongly
depending on the products included in the problem or e.g. the relation between
the amount of space available and the amount of products to place varies strongly.
While on a specific problem instance a meta-heuristic leading to high quality
solutions might be developed, the same meta-heuristic might fail upon other
instances. This can be explained using the "No Free Lunch Theorem" which states
that there cannot be an algorithm outperforming all others in all problems [24].
Therefore, Bai and Kendall [11] argue that a hyper-heuristic should be used upon
such changing problems which "operates over the solution space indirectly by
searching the heuristic space" and can therefore adapt to the specific problem
instance.

As explained in section 2.2.4, Bai and Kendall [11] used a simulated annealing
algorithm as a high level heuristic choosing from a set of low level heuristics

35

36 Chapter 4. Optimization Algorithm

which define transitions from one solution to neighboring solutions. Even though
their algorithm was proven efficient and delivers high quality solutions in their
optimization model, it again does not support the product connectivity require-
ment in its current form. However, by exchanging the low-level heuristics to
heuristics keeping the product connectivity intact with high probability, their
fundamental idea can be adapted and reused even for this more complex opti-
mization model. This reusability of hyper-heuristics by exchanging the low level
heuristic to fit the specific problem specification is a huge advantage compared
to other optimization algorithms.

The used low level heuristics are described in section 4.3 where the problem of
Bai and Kendall’s [11] heuristics, namely the violation of product connectivity,
is explained in further detail. Even though the solutions output by these new
heuristics produce valid solutions with high probability, it might still happen
that a generated neighbor violates a requirement. Therefore, algorithm 1 was
modified to check if the generated neighbor fulfills all requirements and skips
it if this check fails. Furthermore, instead of returning only one solution the
algorithm is modified to output a set of solutions from which the user can choose.
The modified version of the algorithm is outlined in algorithm 2.

As already explained in the related work section 2.2.4 the main feature of simu-
lated annealing algorithms is that they can escape local optima. This comes from
the fact that depending on the temperature and the difference in rating to the
current placement the algorithm can transition to worse neighbors. While this is
likely in the beginning when the temperature is high it happens rarely towards
the end of the algorithm when the temperature is low.

The initial solution is determined as described in the next section. For outputting
a set of the best solutions, a priority queue ordered by the evaluation value
obtained by f(s) was used. This queue only memorizes the best resultSize
results, as saving all would quickly exceed memory capacity. Naturally, only
solutions not already contained are added to the queue. This is important as
the algorithm might visit the same solution multiple times. For the amount
of iterations nrep until the cooling schedule is invoked a value of 3 was used,
which was achieved by experimental tests of the algorithm’s performance. The
temperature function is t → t/(1 + βt) as defined by Lundy and Mees’s [26]
cooling schedule. This is the same schedule Bai and Kendall [11] applied who
defined β =

(ts−tf)Taverage
Tallowedtstf

where ts and tf are the starting and final temperature
and Taverage and Tallowed are the average time needed for one iteration and the
time allowed for the whole search. Tallowed is given by the user through the UI
while Taverage is computed by an initial procedure applied upon startup. This
procedure simply samples Tallowed ∗ 10 iterations of the algorithm and computes
the average time needed for one iteration. The value 10 was used as it seemed to
be a good compromise between wasting too much time before the algorithm starts
and getting a good approximation of the average iteration time in experiments.
As tf I used 0.01 while the starting temperature is set dynamically depending

4.1. General Algorithm 37

Algorithm 2 Modified Simulated Annealing Based Hyper-Heuristic
Select an initial solution s0;
Insert s0 into a priority queue Q limited to size resultSize;
repeat

Randomly select a heuristic h ∈ H ;
iteration_count = 0;
repeat
iteration_count++;
Applying h to s0, get a new solution s1;
if (isConsistent(s0)) then
δ = f(s1)− f(s0);
if (δ ≥ 0) then
s0 = s1;
enqueue s0 into Q;

else
Generate a random x uniformly in the range (0, 1);
if (x < exp(δ/t)) then
s0 = s1;
enqueue s0 into Q;

end if
end if

end if
until iteration_count = nrep;
set t = temperatureFunction(t);

until the stopping criteria is satisfied
return Q;

on the concrete problem instance: Tallowed ∗ 10 neighbors are generated from
the initial solution and the biggest possible gain δmax in evaluation value is
computed. Now analogously to Bai and Kendall [11] the starting temperature is
set to ts = −δmax/ln(0.85) in order to allow 85% of bad moves in the beginning
of the algorithm.

One should note that starting the algorithm with a computation time of 1000
but interrupting it after 20 seconds and outputting the current best solution
can not be considered equivalent to starting the algorithm with an allowed
computation time of 20. This comes from the fact that the temperature function
uses Tallowed and therefore the temperature cools off at a different speed in both
cases. Therefore, the worse neighbors are accepted more easily in one case than
the other.

Figure 4.1 offers an overview over the entities needed for the optimization algo-
rithm. The algorithm used for finding initial solutions is outlined in section 4.2.
From this initial solution the algorithm generates neighbors by applying any of
the heuristics described in section 4.3. Even though these heuristics produce valid

38 Chapter 4. Optimization Algorithm

neighbors with high probability it might still happen that a neighbor violates a
requirement defined in section 3.2.2. Therefore, a consistency checker is needed
which is described in section 4.4. In order to compare the current state to the
neighbor the evaluation function defined in section 3.2 is used which in turn
utilizes the demand function 3.7. In the end found solutions are sorted without
adulterating the quality of the placement as is described in section 4.5.

Figure 4.1: Overview over the needed entities for the optimization algorithm.

4.2 Finding an Initial Solution

For placements with a high density, meaning that there is barely enough space to
accommodate the lower facing bounds for all products, finding an initial solution
which satisfies all requirements is not as easy as it might seem. Depending on the
combinations of products chosen for each board there can be more or less unused
space which can be critical if almost all available space is needed to satisfy the
lower facing bounds. Therefore, a greedy algorithm was developed, which works
well in practice. Nevertheless, as it is a greedy procedure it is not complete. The
algorithm is outlined in the following:

1. Sort products by the biggest amount of space needed in descending order.

2. In that order of products: try to find a board, where the whole minimum
facing amount fits. If no such board exists try to allocate the minimum
facing amount on neighboring or unrelated boards without destroying the
connectivity of products.

3. Fill up the used boards. Therefore first try to add facings to existing prod-
ucts, second add up with other products while not loosing connectivity.
Here, products which will stock-out according to the demand function are
prioritized.

4. Fill up unused boards. Therefore first check if it has a used neighbor which
can get copied or extended (vertical or horizontal). Take the neighbor filling

4.3. Heuristics 39

up the most space and and do so. Afterwards or if no neighbor exists do a
consistent random add up.

The biggest amount of space needed simply describes the width needed to
allocate the minimum amount of facings for each product. Two boards are
unrelated if they are located in different shelves. The consistent random add
up simply chooses a random product and places it on the board. If this new
placement violates product connectivity the newly placed product is removed
again and the next product is placed instead.

Naturally, this greedy procedure cannot be complete. Therefore, if no valid
solution is obtained by the above algorithm, the user is asked if he wants to
perform a brute force search. However, it happens only very rarely that the
greedy algorithm does not find a solution, and in the case it fails, it might be that
there exists none. It might be the case that the overall space needed is smaller
than the available space, however, due to the physical dimensions of the products
there does not exist a solution. E.g. consider a shelf consisting of 3 boards each
of size 4 and 4 products of size 3. Basically, the products need a total space of
12 and the boards have a total space of 12, however on each board fits exactly
one product and the last product would have to be split up in 3 equal parts in
order to fit. In this scenario the above construction would not find a solution,
however, the brute force algorithm would not either. Still there could be cases
where the greedy algorithm fails but the brute force algorithm finds a solution.
Therefore, upon a fail of the greedy algorithm the user can choose to brute force
the solution, however, as this might take a long time as there potentially exists no
solution the program suggests to change the settings instead.

4.3 Heuristics

Bai and Kendall [11] used extremely random heuristics like randomly selecting a
facing of a product and replacing it with as many as possible facings of another
randomly chosen product or, as further examples, deleting a random facing or
adding a random product to a random board. This tremendous amount of ran-
domness was fine within their model as they had only very few constraints and
especially no product connectivity constraint. However, in a more constrained
model as FrAPP’s it leads to a huge problem: highly random heuristics like
swapping random facings of random products violates the product connectivity
property with high probability. One must be extremely lucky to swap two ran-
dom facings in a way that both newly placed products are still connected to the
old ones. Therefore, the neighbor state is probably invalid and can therefore not
be considered any further.

Another problem of Bai and Kendall’s [11] heuristics is that one third of their
heuristics deletes facings which always results in less demand and therefore
less profit. Unfortunately, as the temperature cools off it becomes less and less

40 Chapter 4. Optimization Algorithm

likely to transition to worse neighbors which means that even though the delete
heuristics get applied and use computation time, it is extremely unlikely that the
changes they made actually get applied. This in turn makes the add heuristics,
which are another third of all heuristics, superfluous since adding is impossible
if the shelves are fully stocked. Taken together this means that at the end of the
simulated annealing algorithm almost two thirds of the heuristics are executed
without having any effect on the final result.

Due to those limitations the heuristics used by FrAPP’s simulated annealing algo-
rithm try to achieve two things: leading to valid solutions with high probability
and not becoming superfluous during the algorithm. The used heuristics will be
briefly explained in the following:

Swap1FacingHorizontalRandom: This heuristic chooses a random board and a
random position between neighboring products on the board. Then facings of
one product get deleted until the resulting gap is large enough to accommodate
at least one facing of the other product. This gap then gets filled with as many
facings of the other product as fit. A simple example can be seen in figure 4.2.
Naturally, the swap is only performed if the product loosing facings still has
more facings than the minimum amount afterwards and the product gaining
facings does not exceed the upper facing bound after the swap. Otherwise the
swap is not performed. If a swap on one board fails, the next randomly chosen
board is used until either the swap was successful or failed upon all boards.

Figure 4.2: A simple example for the Swap1FacingHorizontalRandom heuristic.

Swap1FacingVerticalRandom: First, this heuristic tries to find two vertically
neighboring boards at random. Then a horizontal position is randomly chosen
and facings of one of the products located at this position upon one of the
vertically neighboring boards are deleted until at least one facing of the product
from the other board at this position fits into the gap. For an example see figure
4.3. Naturally, the swap is only performed if the products at the random position
differ. Again, facing bounds have to be satisfied after the swap.

Figure 4.3: A simple example for the Swap1FacingVerticalRandom heuristic.

Swap1FacingWithNeighborBoard: This heuristic tries to find two horizontally
neighboring boards and does the same as the above heuristic with the two

4.3. Heuristics 41

products at the border of the boards. Naturally, the boards are chosen as random
as possible. An exemplary application can be seen in picture 4.4.

Figure 4.4: A simple example for the Swap1FacingWithNeighborBoard heuristic.

SwapAllocation: This heuristic chooses two products at random and places as
many facings of product A where product B was and the other other way around.
In the whole, allocations are swapped. Figure 4.5 shows an exemplary neighbor
generation using this heuristic.

Figure 4.5: A simple example for the SwapAllocation heuristic.

EqualDistribution: This heuristic balances the amount of space allocated to two
products as equally as possible by removing and adding facings from each board
on which both are placed. As an illustration see figure 4.6.

Figure 4.6: A simple example for the EqualDistribution heuristic.

ReduceFacingsToMinimum: This heuristic chooses a product randomly and
reduces its facing to the minimum allowed amount. Then the resulting gaps on
the different boards get filled with facings of the horizontal and vertical neighbors.
Figure 4.7 shows a really simple example. Again, this heuristic is only applied to
products where one has more than the allowed minimal amount of facings and
the other has less than the allowed maximum.

Figure 4.7: A simple example for the ReduceFacingsToMinimum heuristic.

One should note that even though the probability that these heuristics violate
constraints is significantly less than Bai and Kendall’s [11] heuristics in the context
of my constraints, it is not impossible for them to violate constraints. For example,
if product instances were only connected because this product had a great amount
of facings on a board, the EqualDistribution heuristic might destroy connectivity
by removing facings from this specific board. Nevertheless, the above heuristics

42 Chapter 4. Optimization Algorithm

will lead to valid solutions with significantly higher probability Bai and Kendall’s
[11].

Furthermore, it is important to see the difference between the randomness in
the above heuristics and the randomness in Bai and Kendall’s [11] heuristics.
E.g. the swap facing heuristics look similar at first glance, however, the above
heuristic swaps only between neighboring products and considers minimum
and maximum facing bounds while Bai and Kendall’s [11] swap heuristic swaps
random facings of randomly chosen products. This especially means that the
disappearing facings might be in the middle of the space allocated by a product
and that it might be filled using a product which is located at a completely
different spot in the shelf.

4.4 Satisfying Requirements

This section shows how the fulfillment of the requirements defined in section
3.2.2 is ensured. As soon as any of the following verifications fails, the current
placement is considered inapplicable and the simulated annealing algorithm
proceeds from the previous state again instead of translating to the new neighbor.
This approach ensures that only valid solutions are returned. Naturally, one could
also transfer to invalid neighbors, as an invalid neighbor might become valid
again at some point and only exclude the inconsistent state from the solution set.
Nevertheless, FrAPP uses the first approach since it is almost impossible that
all possible neighbors are invalid, while on the other hand it might take a long
time until an inconsistent state becomes consistent again: consider for example
a scenario with 50 products where a product P has a minimal facing amount
of 2 and a heuristic reduces the amount of facings of P to 1. Now first of all a
heuristic which could in theory add the missing facing needs to be chosen (not all
heuristics can do this depending on the concrete placement), second the heuristic
must choose this product as the one getting more space assigned (probability 1
over 50), and third the assignment has to be applicable without violating any
other constraint.

4.4.1 Facing Bounds

Checking if the facing bounds given by the user are satisfied is easy: FrAPP
simply counts the amount of facings assigned to each product in the current state
and checks if given bounds are satisfied or violated.

4.4.2 Prohibit Stock-Outs

Deciding weather or not a given placement leads to stock-outs, is done exactly as
formulated in the mathematical model: as argued in section 3.2.2 it is not even
allowed that product instances in the front (facings or their stackings) disappear.

4.4. Satisfying Requirements 43

Therefore, as formula 3.12 suggests the expected sales for each product (defined
by the demand function) should be less or equal to the product instances behind
the front which can be trivially be computed.

4.4.3 Product Connectivity

The optimization model requires of all valid solutions to satisfy the connection
criteria. That is, all product instances of a product must be connected within
a shelf. In section 3.2.2 this requirement was described and an oracle called
"productsConnected(i)" was used in the model thereafter. However, for keeping
the amount of variables manageable this limitation of solutions was not defined
mathematically. In the following the implemented algorithm for checking the
above criteria is explained.

The first step of the algorithm is to transform the placement into a graph. Here,
each product is represented by a node and an edge between two nodes exists
if and only if both nodes represent the same product and the two products are
connected directly. That is, the two products are either direct horizontal neighbors
or they are connected vertically meaning that the intervals in space covered by
the products overlap. Example 4.8 show two placements in the shelf with the
connectivity graphs as an overlays.

Figure 4.8: The left picture shows the graph of a valid solution as all product
instances are connected, while the right image shows the graph upon a more
complex and forbidden placement where products are arranged in an offset
pattern.

One main observation can be made from these examples: in legal placements all
product instances of a particular product form a connected component, while
illegal placements have product instances distributed over at least two connected
components. As an example consider the right image of figure 4.8, where Brown-
ies and QKies each form one single connected component, while the shower gel
forms two separate components each of size two. More formally, a placement is
valid if and only if for each product in the placement it holds that the amount
of product instances equals the size of a connected component for this product.
This basically requires that for each product there exists exactly one connected
component holding all product instances.

44 Chapter 4. Optimization Algorithm

With this observation the algorithm checking for product connectivity simply
compares the amount of each product with the size of a connected component for
this product and returns false if they do not match. The size of a connected com-
ponent gets computed using a breadth-first search starting at a node representing
the product and counting the visited nodes.

Using the graph described as above where edges can only exist between nodes
of the same product instead of the complete neighboring graph improves the
running time of the algorithm significantly. For one, building the graph is faster
as many edges are superfluous and more importantly the algorithm computing
the size of connected components runs faster since all edges are valid and tremen-
dously less edges have to be examined. It is important to improve this connection
checking algorithm as much as possible since it is called thousands of times in
the simulated annealing algorithm.

4.5 Sorting

The resulting placement can be sorted without changing the evaluation value as
long as products stay on the same levels of height. As argued in the previous
chapter, demand is not influenced by the horizontal position or at least no overall
preferred horizontal position could be found [2]. Therefore, the horizontal po-
sition is not influencing demand in FrAPP’s model, which is why products can
be translated along the horizontal axis without changing the profit achieved by
the placement. As better sorted shelves are more customer friendly, a horizontal
sorting should be performed. Of course, one could also constrain the optimiza-
tion model more strictly to automatically yield perfectly sorted shelves, however,
since this would rule out a huge amount of solutions it probably leads to less
profitable solutions which itself should be avoided. One should note that product
connectivity is already a constraint which yields a base level of sorting. However,
even though this base sorting is already acceptable, stronger sorting is preferred.
For this reason when the final solution is found, it gets sorted by horizontally
swapping the product order. However, there exist cases where sorting is not
possible because e.g. a category is located on the topmost and bottom most
board, but not on the middle board. If this is the case, the placement is returned
in its current form, that is, the product connectivity criteria is fulfilled, but no
additional sorting is performed.

Two different orders are supported: sorting by brand and sorting by type. Of
course any other order can be easily used as long as a function dividing the
products into categories is given. If sorted by brand this function simply puts
products of the same brand into one category and if sorted by type products
belonging to the same parent category are taken as a unit. If the data is specific
enough, one could for example divide muesli into chocolate muesli, fruit muesli
etc. An example with overlays for sorting by type can be seen in figure 4.9. Image
4.10 shows another solution for the same problem instance being sorted by brand.

4.5. Sorting 45

Figure 4.9: Boards sorted by type with an overlay for each category.

Figure 4.10: Boards sorted by brand with an overlay for each producer.

Given these categories of products the sorting process is started. It consists of
two independent sorting procedures, one trying to find category allocations
that match and another aiming for product connectivity within such a category
connected allocation. By splitting the sorting procedure into the above two
subroutines the search space is reduced dramatically in the first step which
speeds up finding overall solutions in the second step.

Retrieving consistent category orderings is done in the following way: the sizes
of all categories on each board are computed by simply summing up the product
widths for each category. Then starting from an initial category ordering the
order per board gets permuted in every possible way leading to a set of possible
category orderings per board. Using simple combinatorics, shelves are created
using all possible combinations of entries in the category orderings per board.
Naturally, only shelves where all category instances are connected are memorized.
This category connection criteria is analyzed by building up a graph and checking
connectivity therein. Overall this verification is done analogously to the product
connectivity check which is explained in further detail in section 4.4.3.

Now that all category orderings are found, allocating products within this order is
realized by trying all permutations within each category consistent shelf until an
ordering satisfying the product connectivity criteria is found. If one such category

46 Chapter 4. Optimization Algorithm

consistent shelf has no product connectivity satisfying product allocation, the
algorithm proceeds with the next category consistent shelf. Again, the product
connectivity gets checked by building up a graph as explained in more detail in
section 4.4.3.

4.6 Concurrency Modes

Apart from the single threaded version of the simulated annealing algorithm,
which can be seen in figure 4.11, three different concurrency modes were imple-
mented. The amount of threads spawned in each mode is limited by the amount
of cores the target machine supports.

The parallel runs mode executes the complete algorithm in parallel. For a graph-
ical overview see figure 4.12. The result sets of the different threads then get
merged with duplicate elimination and ordered by their evaluation value. This
concurrency mode is basically the same as running the algorithm multiple times
using the same settings and taking the best results. Different algorithm runs
might lead to different results as each run can develop into a completely different
direction depending on the selected heuristics, their internal randomness and
which worse solutions get accepted.

As the name suggests, concurrency mode parallel heuristics executes multiple
heuristics in parallel as can be seen in figure 4.13. That is, whenever the simulated
annealing procedure normally chooses one heuristic and generates a neighbor,
it now creates multiple neighbors using different heuristics. As in the single
threaded version the algorithm performs nrep iterations with each heuristic,
that is, nrep times a neighbor is generated by the heuristic and the procedure
transfers to the neighbor if it is better or the algorithm is lucky. The best neighbor
according to the evaluation function is then chosen and the algorithm continues
normally. If it is better than the current placement the algorithm transitions to this
best neighbor, if it is worse, the algorithm transitions to it only with a probability
depending on the temperature.

The last concurrency mode is called parallel neighbors and splits after selecting
an heuristic, which is depicted in figure 4.14. Using this selected heuristic multiple
neighbors are generated. Here, one should note that all heuristics contain a
randomness and therefore executing the same heuristic multiple times yields
different neighbors. These neighbors are then compared and the best is chosen.
Again, using this best neighbor the algorithm continues normally.

Previous two concurrency modes consider multiple neighbors in each iteration
thereby leading the algorithm in better directions. However, taking the most
promising direction might not always be the path to the optimum. The evaluation
should determine which of the above concurrency modes yields the best solutions
and which is more efficient.

4.6. Concurrency Modes 47

Figure 4.11: Single threaded version of the simulated annealing based hyper-
heuristic.

Figure 4.12: Parallelization mode parallel runs.

48 Chapter 4. Optimization Algorithm

Figure 4.13: Parallelization mode parallel heuristics.

Figure 4.14: Parallelization mode parallel neighbors.

Chapter 5
Implementation

5.1 Implementation Details

The program was implemented as part of the "Innovative Retail Laboratory"
(IRL) software, a research lab of the DFKI (German Research Center for Artificial
Intelligence) in cooperation with the German retailer GLOBUS SB-Warenhaus
Holding in St. Wendel [28]. This software already offered the possibility to walk
through 3D models of supermarkets existing in reality.

As a programming language Java with Java3D for rendering the scenes and
products was used.

Real data was provided by Globus which allows realistic scenarios. It contained
almost all needed information like product assortment, prices, physical dimen-
sions of products and boards, previous sells, previous locations, etc. This data
even enabled the program to distinguish stackable products from unstackable
ones (e.g. Muesli is stackable while wine is not) and compute their demand
differently. Even such detailed data as the stacking behavior is important as e.g.
assigning vertically large boards to unstackable products might be less profitable
than assigning it to stackable products even if the unstackable product itself
is more lucrative and demanded. All data from the database was fetched in a
initialization phase and then cached to limit the network traffic to a minimum
and thereby increase the computation speed dramatically.

Unfortunately, even though a lot data was at hand, some other data needed
for the optimization model was missing, namely the amount of taxes and the
purchasing price of different products. Therefore, instead of optimizing the gross
profit subtracted by the taxes it is simply assumed that the profit of each product
is 5% of its selling price. This basically sets the purchasing costs to 95% of the

49

50 Chapter 5. Implementation

selling price and ignores the taxes. Of course having the required data would lead
to higher quality solutions, however, most of the important data was provided
by Globus which already yields good and realistic solutions.

5.2 Parameter Estimation

For the demand function described in 3.1.3 the following parameters are needed:
the location values of the different boards, the space elasticity, the cross space
location elasticity and the worst allocation demand.

Location Values

The location values of boards get computed in a really simple manner: depending
on the distance to the floor, boards get assigned different location value. Here,
the worst positions get a value of one (analogously to Dréze et al. [2]) and the
closer a board is to eye level, the higher the value gets. The eye level is the height
in which the eyes rest assuming an average human. Since the average German
is 172 cm tall [29] and the eyes are approximately 7 cm below, the eye height
is around 165 cm above the floor. Humans prefer viewing slightly towards the
ground which naturally influences the eye level. Analogously to Dréze et al.
[2] the computation uses a 15 degrees angle of view. Assuming the customer
is standing 30 cm away from the shelf, the difference between eye height and
the actual point of rest can be computed using the geometry of an orthogonal
triangle:

tan(α) =
oppositeLeg

adjacentLeg
↔ tan(15 ◦) =

oppositeLeg

30cm
−→ oppositeLeg = 8cm

(5.1)
Therefore, the middle of the eye level should be defined as 172cm− 7cm− 8cm =
157cm. The section containing the eye level can then be defined as the interval
between 150 and 175 cm. As Dréze et al.’s [2] field study showed that a 39%
difference in sales exists between the best and the worst vertical position, the eye
level section gets a value of 1.39, meaning that 39% more products get sold if
they are placed on eye level compared to floor level. Table 5.1 shows the concrete
values used for the different sections.

0 - 50 50 - 80 80 - 110 110 - 140 140 - 170 170 - 190 > 190
1.0 1.1 1.2 1.3 1.39 1.25 1.0

Table 5.1: Table defining the location values corresponding to different heights.

If the data dividing products into children and adult products was at hand it
would easily be possible to determine the location value depending on the aver-
age height of the target audience. This would lead to better results as children’s

5.2. Parameter Estimation 51

products should be located lower in order to attract attention than adult’s prod-
ucts. However, since this data is not available the current implementation uses
157 cm as the best height.

Space Elasticity

A lot of research has been done to get good estimates of the space elasticity.
Curhan [5] found an average value of 0.212 in his experiments, while others like
Desmet and Renaudin [8] found an average value of 0.2138. Generally, Hwang et
al. [10] and Reyes and Frazier [7] offer great overviews over the space elasticity
parameters achieved by different experiments. Of course, it would be best to
have different space elasticities for different products, however since this data
does not exist this implementation uses the same value for all products as an
approximation. Despite arguments for all of the above values, FrAPP uses 0.17 as
space elasticity which is the average value Eisend [30] found in the latest research
on this topic.

Cross Space Location Elasticity

Even though in theory cross space elasticities and therefore also cross space
location elasticity can be positive as well as negative, automatically determining
positive values is almost impossible because positive values describe scenarios
like sells in milk leading to an increase in the sales of muesli. However, negative
interrelations can be approximated using the given data in the following way:
the products are given in a category graph where each category can have parent
and child categories. The assumption is that products influence each other
more negatively the closer the earliest common ancestor is. This is logical as for
example chocolate mueslis have a higher competition than mueslis in general.
Therefore, the algorithm determining the cross space location elasticity computes
the closest ancestor between two products and retrieves the amount of categories
between the product itself and this common ancestor. If it is the direct parent
of one of the two products the cross space location elasticity is high (-0.03), if
it is the grandfather of a product the value is already lower (-0.005) and if the
common ancestor is even further away there is no interdependence anymore
(value 0). Products without a common ancestor are of course assumed unrelated
and therefore have a cross space location elasticity value of 0. The above values
are taken from Coskun [9], however, like most of the related work, Coskun
simply chose a random value in an interval for product pairs instead of using
the category graph. Even though Coskun designed those values for cross space
elasticity instead of cross space location elasticity, they should apply here as well,
since the only difference is that the amount of space assigned to a product is
multiplied by a location factor in the range of [1, 1.39] before it is expotentiated by
the cross space location elasticity value. Therefore, it is potentially larger than the
cross space elasticity which is fine as the combined effect of space and location is

52 Chapter 5. Implementation

larger than the effect of space as well. Even though using this value should serve
its purpose, finding precise values in a field study would improve the results
of FrAPP. Furthermore, the approach using the category dependencies is still
only an approximation and requires the dependency data, however it is closer to
reality than most of the related work approaches.

For both space elasticity and cross space location elasticity the measure of space
is extremely important: if, abstracting from the unit, space falls below 1, po-
tentiating it to a value in]0,1[is larger than the space, while expotentiating a
value bigger than 1 to the same cross space location elasticity value is larger than
1, but smaller than the unit space itself. Analog problems occur with negative
exponents for cross space location elasticity. As it is always required that the
product values for space elasticity are bigger or equal 1 and smaller equal 1 for
cross space elasticity, it is implied that the space covered by a product should
never be below 1. Since square meters or decimeters cannot guarantee this, and
smaller units lead to an extreme blow up in the space units covered by a product,
FrAPP uses the area of the smallest product as the unit of space and computes all
areas as multiples thereof. This ensures that the area is always equal or bigger to
1 while avoiding gigantic space amounts as far as possible.

Worst Allocation Demand

The worst allocation demand can be computed using the above parameters,
the previous demand which is equivalent to previous sales, and the previous
placement which consists of the locations and amount of space in these locations.
Using the demand function and inserting the previous placement and previous
demand one can now solve the equation for the only missing variable, namely
the worst allocation demand.

Previous sales are part of the data provided by Globus which also contains a
mapping between products and the boards they were placed upon together with
the amount of facings on that board. The previous sales value was averaged over
the last three months to remove daily variation. Naturally, some products might
be sold disproportionately often on some days of the week, however, as shelves
are not reallocated on daily basis these effects should be ignored. Unfortunately,
for some products the previous demand or the previous placement was missing.
If this is the case, the average worst allocation demand gets used instead.

5.3 Program Interaction

5.3.1 GUI

The three relevant parts of the GUI can be seen in figure 5.1: the top left part is
the main menu of the IRL software where a button starting FrAPP’s problem
specifying GUI is located. This GUI can be seen in the right part and is explained

5.3. Program Interaction 53

in further detail in section 5.3.1. The bottom left part allows the user to navigate
through 3D models of supermarkets existing in reality. As this possibility was
given, the user interface was designed such that it interacts with the 3D scene:
boards get selected by clicking on them and the resulting solution is directly
placed in the 3D model.

Figure 5.1: FrAPP’s GUI included in the IRL software with overlays for the
different sections.

User Specifications

Figure 5.2 shows the GUI for specifying the requirements of the solution. At
first, the user can select the products that should be placed out of a catalog of
all available items (see 1). As already mentioned the boards which should be
filled get selected by simply clicking on the virtual representation in the 3D
supermarket. All selected boards are then displayed in section 2 of figure 5.2.

Even though products and boards are already sufficiently defining a problem
instance the user has the possibility to specify the requirements of a solution
requirements in more depth.

54 Chapter 5. Implementation

Figure 5.2: The UI for specifying the concrete shelf space allocation problem.

In section 3 of the GUI the user can specify product dependent requirements.
For one he can set lower and upper bounds on the amount of facings as well
as an upper bound on the vertical stacking. As mentioned earlier these facing
bounds can have different reasons like for example contracts with manufacturers
to place their products at least x times [12]. Each intermediate solution will then
be checked to fulfill these given bounds in the algorithm. The stacking bounds
can be used for aesthetic reasons, since some products should not be stacked
more than e.g. twice. Naturally, products will then be stacked at most as often
as specified and the specific stacking gets used in the facing area computation

5.3. Program Interaction 55

which directly influences the demand. If no stacking bound is given, products get
stacked as often as they fit in the height of the board. Furthermore, a trend can be
defined for each product which can be used to insert expected sales due to out-
of-store factors. If e.g. the person planning the shelf expects an increase in sales
because a lot of promotion was made or, as another example, if the Easter season
is starting it is known that the sales in eggs rise for a specific percentage, this can
be inserted into the program and will be considered in all further computations.
Furthermore, the user can specify discounts the retailer gets if a given amount
of products is purchased. Therefore, he simply enters the amount of products
needed and the percentage discount. Upon rating a placement the algorithm
then checks if the products behind the front are at least as many as the volume
needed and if this is the case deducts the discount from the purchasing costs. As
already argued products in the front should never disappear since this would
result in a smaller demand and therefore lost sales. Therefore, the maximum
the retailer can purchase at a time is the amount behind the front which is the
reason for the above computation. Due to such volume discount specifications
the program is able to detect not only which placement gains the most income,
but also considers that one placement might cost less than another because the
retailer gains more discounts.

Despite specifying product-specific parameters, the algorithm can also be trimmed
generally. The heuristics getting applied can be activated or deactivated (see 4),
the computation time can be specified, it can be chosen whether to sort by brand
or type, the concurrency mode can be selected and it can be chosen whether prod-
ucts currently located on the boards should be removed or if the solution should
be build around them (see 5) and different parameters influencing demand can
be scaled differently (see 6).

Even though the user can choose the heuristics, some used heuristics can also
get post-selected when the algorithm starts: it is useless to include the heuristic
switching facings between horizontally neighboring boards if there is no such
neighbor. Therefore, in all these cases where heuristic become useless due to the
specific setting, the superfluous heuristics get deactivated automatically to use
the computation time for meaningful heuristics instead.

The computation time can be changed depending on how much time the user
has available. Naturally, longer computations should result in higher quality
solutions, however, the resulting gains should be diminishing, meaning that
5 instead of 2 seconds improves the result way more than 110 instead of 100
seconds. The given computation time only specifies the time the simulated
annealing algorithm itself can use and does not contain the initialization or
sorting time. The reason for this is that e.g. the sorting time cannot be computed
in advance and therefore it cannot be reserved for the end. Furthermore, only the
time used by the simulated annealing procedure directly influences the quality
of the result.

56 Chapter 5. Implementation

Furthermore, the user can place products on the shelves manually and then
start the shelf planner on the remaining space. This can be useful if the retailer
has merchandising standards which the shelf has to fulfill but wants to use the
remaining space with the remaining products as profitable as possible. Internally,
the algorithm then marks the used space as filled and only allocates products to
the remaining space.

Parameters can be scaled to give the user more flexibility: if in the user’s opinion
the space elasticity is not influencing the placement enough, he can choose to
scale it up.

Section 7 of figure 5.2 shows a button panel. At any point in time it is possible to
stop the computation which allows a user noticing failures in his configuration to
quickly fix them without having to wait till the end. After successful termination
the program offers a solution set from which the user can choose the final result
by clicking on the next and previous placement buttons. The offered solutions are
the ten best solutions found in the process (in parallelization mode parallel runs
the sets of solutions from all threads get merged to one solution set). However,
since sorting changes the horizontal product order, solutions might coincide after
they are sorted which tightens the solution set due to duplicate elimination. Once
the user finally selects a solution he can export it to a HTML website as described
in section 4.5. Furthermore, it is possible to reset the whole configuration to the
default one and remove all placed products again.

Visualization of Results

The resulting placement is visualized by placing 3D models of the products into
the shelves in the virtual supermarket. This method also allows viewing the
shelves from the side and therefore see the stacking in depth which would be
invisible in a 2D visualization. Often users need to consider the products in
neighboring shelves when selecting the items the software should place within a
particular shelf. Here, the possibility to navigate through the scene allows them
to easily grasp the orderings of the neighbors by simply moving the camera in
the 3D scene. Figure 5.3 shows a screen-shot of stocked boards.

Feedback on Algorithm Performance

The simulated annealing based hyper-heuristic algorithm as described in the pre-
vious chapter is highly non-deterministic as it uses lots of randomness. Therefore,
a chart depicting the performance of the algorithm is shown upon termination
to proof that despite all this randomness the algorithm performed as expected.
Otherwise the user would simply have to believe that a close to optimal solution
was found without any visualization of its performance.

The chart depicting the performance of the algorithm was created using JFreeChart,
a Java library for easily creating high quality charts. Upon termination of the

5.3. Program Interaction 57

Figure 5.3: A stocked shelf in 3D view.

simulated annealing algorithm a line chart is shown, having a counter of all
valid solutions on the x-axis and the rating corresponding to this solution on the
y-axis. Naturally, placements violating some requirements are excluded from the
chart. As the rating corresponds to the expected sales, the chart basically maps
placements, ordered by their appearance in the algorithm, to expected profits
achieved by using these placements. Two exemplary charts can be seen in the
figure 5.4.

Figure 5.4: The performance graph for the simulated annealing procedure. Left
image in parallelization mode SINGLE_THREADED and right image in mode
PARALLEL_RUNS.

If the parallelization mode is PARALLEL_RUNS different lines for each thread
are drawn as can be seen in the second image. In the simulated annealing
algorithm it is likely to transition to worse neighbors in the beginning but then
becoming less and less probable as the temperature controlling transitions cools
off. Therefore, the graph should vary strongly in amplitude in the beginning

58 Chapter 5. Implementation

and then become more and more constant towards the end as it is the case in the
exemplary graphs. Furthermore, since the optimization model is a maximization,
the overall tendency of the graph should of course be ascending.

5.3.2 Export

Planograms are used to communicate the shelf layout between the planner who
designed it and the employer who actually places the products. Therefore, an
export functionality generating such planograms is a core functionality. This ex-
port consists of a picture of the visualized shelf and two tables storing additional
information. These three elements get exported as a HTML website to allow
employees to access the data directly from the sales area.

For generating a virtual image a camera is placed in the 3D model of the super-
market and the currently rendered frame is saved as an image. In order to find
the camera location and viewing direction to see all newly placed products in one
picture three steps have to be processed. First, the midpoint of the filled boards is
computed. Second, the vector vertical to the shelf has to be found since the final
camera location is located upon the straight line defined by the midpoint and this
vertical vector. Third, the distance of the camera to the midpoint on the straight
line has to be computed. Since the camera should see all newly placed products,
first the bigger dimension, width or height, has to be determined. Then using
the geometry of an orthogonal triangle and a 45 degree angle of view camera the
distance can be computed with the following formula:

distance = tan−1(22.5 ◦) ∗ 0.5 ∗Max(Width,Height) (5.2)

This formula can be explained using figure 5.5.

Figure 5.5: The orthogonal triangle used for the computation of the distance
between shelf and camera.

5.3. Program Interaction 59

Placing the camera in the above way ensures that all newly placed products can
be seen while not being too far away from the shelf. An exemplary rendered
image can be seen in figure 5.6.

Figure 5.6: The image of the shelf used as a planogram.

Furthermore, two tables are part of the exported HTML website. They both
show the information of the image like the names of the products and how often
they are stacked. However, they also store additional information which the
image does not offer: the EAN (European Article Number), the producer and the
physical dimensions (width, height, depth). As the tables for the above example
are large, only parts can be seen in figures 5.7 and 5.8. The complete tables
can be found in appendix A. These two tables differ in their layout: table 5.7 is
ordered according to the rendered image, that is, each row describes one board
and the cells correspond to the facings. In contrast table 5.8 has one row per
facing with one column for the board number and another one indicating the
order position within the board. This second table layout is the one integrated in
Globus’ planograms at the moment.

60 Chapter 5. Implementation

Figure 5.7: The planogram table according to product placements in the rendered
image.

5.3. Program Interaction 61

Figure 5.8: The planogram table ordered as currently used by Globus.

62 Chapter 5. Implementation

Chapter 6
Evaluation

6.1 Overview and Setup

Overall three different problem instances were evaluated: two small problems
upon which the different simulated annealing algorithms could be compared to
the optimum achieved using a brute force procedure and one bigger problem,
for which brute forcing was unfeasible. Nevertheless, one could easily compare
the performances of the four different algorithms on this bigger problem. All
executions were performed on an AMD Phenom II X4 955 Processor, having 4
cores each at 3.2 GHz. Naturally, only products with complete data were used.
Unfortunately many products were missing data about their previous locations,
previous sales or their prices in which case FrAPP uses average values instead.
However, as I wanted to perform the evaluation on scenarios being as realistic
possible, this missing data limited the possible test cases dramatically. Due to the
huge amount of randomness in the simulated annealing based hyper-heuristic
procedure the program was executed multiple times in each concurrency mode
and given amount of time. Here one should notice that running the algorithm
with an inserted computation time of 10 seconds is not equivalent to running
it for 20 seconds but stopping after 10 seconds. This inequality is a result of
the temperature function which includes the overall allowed time (see section
4.1). Therefore, the temperature decreases in a different speed in the above two
cases which results in a different likelihood of worse neighbors being chosen.
Furthermore, the brute force algorithm used for comparison was optimized such
that it only considers solutions where the whole shelf is filled and therefore only
needs to check consistency if this is the case. This is reasonable since less filled
shelves cannot be more profitable than completely filled once.

63

64 Chapter 6. Evaluation

6.2 Problem Instance 1

The first problem consisted of only one single board which had to be filled using
6 products: Whiskey, three different kinds of tea of the same brand, coffee filters
and cookies. Brute forcing the solution took 96.98 seconds and resulted in the
placement illustrated in figure 6.1. One can clearly see that the most valuable

Figure 6.1: The optimal solution of problem instance 1 found using a brute force
algorithm.

product, namely the whiskey, got the most space assigned while all other products
only had space for exactly one facing.

In order to compare the four simulated annealing algorithms to the brute forced
solution, each concurrency mode was executed multiple times with different
allowed computation times: each mode was executed three times in each 2, 5
and 10 seconds of allowed time. As one can easily see in table 6.1, the single
threaded simulated annealing procedure as well as the parallel runs concurrency
mode outperformed the other two: within only 2 seconds both of the above
algorithms achieved the maximum in three of three runs. The parallel heuristics
concurrency mode only found the optimum once given 2 seconds of computation
time and achieved 98.64% of the optimum in the other two runs. However,
with an increased computation time of 5 seconds the optimum was found in
all three test runs. The worst algorithm was the parallel neighbors concurrency
mode which needed 10 seconds to achieve the optimum in three of three runs.
However, even this worst algorithm already achieved 98.64% in all three runs

6.3. Problem Instance 2 65

given only 2 seconds of computation time which is only 2% of the time the brute
force algorithm needed.

Algorithm Single Parallel Runs Parallel Heuristics Parallel Neighbors
Time needed 2 2 5 10

Table 6.1: Results of problem instance 1: time needed by each algorithm to achieve
the optimum in 3 of 3 runs.

The parallel heuristics and parallel neighbors modes always transfer to the best
placement found by any thread. The best neighbor of all threads is with high prob-
ability better than taking a single generated neighbor. Therefore, the algorithm
worsens less with one of the above parallelization modes than with the parallel
runs or single threaded versions. Keeping this in mind, a possible explanation for
the differences in performance between the single threaded or parallel runs and
the other two modes is that one might have to worsen strongly before finding the
optimum. However, this is less likely with parallel neighbors or parallel runs and
therefore more time is needed to achieve the optimum. Naturally, if the single
threaded version performs well the parallel runs mode also performs well as it
simply executes the single threaded version in parallel.

6.3 Problem Instance 2

The second problem consisted of two vertically neighboring boards and three
different kinds of tea of the same brand. Due to the exponential computation time
of the brute force procedure, problem instances with more or smaller products
were not testable. Even on this still pretty small problem the brute force procedure
needed 744.03 seconds. The four simulated annealing procedures were each
executed three times with an allowed computation time of 2, 5, 10 and 20 seconds.
Every single run achieved the maximum three times in a row, no matter which
algorithm or computation time was selected. This means that all algorithms were
able to find the optimum in only 0.26% of the time the brute force procedure
needed.

Figure 6.2 shows two optimal solutions for this problem instance. Overall six
different solutions were found which all achieved the same evaluation value as
the brute force procedure. One fact that all solutions have in common is that the
fruit tea (the tea on the bottom right in the right image) has only one single facing.
However, this is logical as fruit tea has the smallest worst allocation demand of
the three teas. This can also be seen as an explanation why all algorithms were
able to find the optimum in 2 seconds which was not the case in problem instance
1: the probability to find one optimum of six is of course higher than finding
the only optimum. A possible reason why so many optimums exist is that three
products with the same dimensions and profit margins were used.

66 Chapter 6. Evaluation

Figure 6.2: Two optimal solutions for problem instance 2.

6.4 Problem Instance 3

The third problem is significantly more complex than the previous two: it consists
of 4 boards neighboring horizontally and vertically and 15 products of different
categories and sizes: a muesli, Whiskey, Rum, 4 kinds of tea, 5 different shower
lotions or shampoos, cookies and 2 different types of coffee filters. An exemplary
placement can be seen in figure 6.3. One can clearly see that the expensive
spirituous beverages are all placed on the higher board and have really many
facings. Furthermore, the muesli has relatively many facings as well as it is has
the highest worst allocation demand of all products and no competitor product
decreasing the demand. The fennel tea (second from the left) clearly dominates
the other teas as it has the highest worst allocation demand of these four.

As this problem instance is way to complex to brute force, the solutions achieved
by the four simulated annealing algorithms could not be compared to a known
optimum. Instead they were compared against each other. Overall 44 runs were
performed, each algorithm twice with a computation time set to 600 seconds, and
three times each with 5, 20 and 60 seconds of computation time. As expected, the
maximum was found in a 600 seconds run, which was the longest tested amount
of time. However, it was found using the parallel heuristics concurrency mode
which is surprising as this algorithm performed worse than the single threaded
version or the parallel runs version upon problem instance 1. On average over
all runs with the same algorithm and computation time every combination
achieved at least 98% of the best known solution. Furthermore, there was no
single execution achieving less than 97.57% of the best known solution. Table
6.2 summarizes the results of the different algorithm-time pairs, where each cell
contains the average over all runs in the corresponding configuration. The overall
maximum is part of the average in the cell containing a "*".

As one can easily see, the parallel heuristic mode was the best algorithm if given
lots of time, however, if only little time was at hand it was the worst. In contrast,
the parallel runs concurrency mode performed best if given only a small amount

6.4. Problem Instance 3 67

Figure 6.3: A solution for problem instance 3.

Time/Algorithm Single Parallel Runs Parallel Heuristics Parallel Neighbors
5 99.06% 99.65% 98.21% 99.18%

20 99.39% 99.44% 98.75% 99.02%
60 99.08% 99.24% 99.12% 99.50%

600 99.16% 99.41% 99.98% * 99.85%

Table 6.2: Results of problem instance 3: achieved percentage of best known
solution averaged over three runs.

of time. Also, the parallel neighbors algorithm seems to perform better if given
more time: it was the best algorithm for 60 seconds and the second best for 600
seconds. Not too surprisingly, the single threaded version never was the best, no
matter how much computation time was selected. This seems logical as running
the program in concurrency mode parallel runs on 4 cores is equivalent to taking
the best result of 4 runs of the single threaded version. Furthermore, one should
note that there is no clear improvement due to a bigger amount of time, which
indicates that it is needless to let the algorithm run for a long time.

Nevertheless, as all these results are relatively equal no algorithm can be said to
be definitely superior to all others.

68 Chapter 6. Evaluation

6.5 Conclusion

All algorithms are able to achieve the brute forced optimum within significantly
less time upon small problem instances, no matter whether only similar products
are used (problem 2) or many different kinds of products (problem 1). As all
algorithms were equally good on problem 2 but the single threaded and parallel
runs version outperformed the others on problem 1 we have a small performance
tendency towards those two algorithms. While still being relatively equal, the
parallel heuristics and parallel neighbors modes seem to slightly outperform
the parallel runs concurrency mode if given much time on a bigger problem.
However, if given only little time the parallel runs concurrency mode slightly
outperforms the other two. In general one can say that parallelizing the simu-
lated annealing based hyper-heuristic leads to very small improvements only.
Nevertheless, summing up even these tiny improvements of each board over the
whole supermarket can lead to significant profit gains.

Chapter 7
Conclusion and Future Work

7.1 Summary and Conclusion

FrAPP aims to find optimal solutions for the shelf space allocation problem. In an
intuitively usable GUI users can specify which products should be placed upon
which boards of a supermarket. Here, minimum and maximum facing amounts,
the maximum allowed stacking, volume discounts and trends can be specified
for each product. For finding an optimal placement, the profit of the allocation
has to be computable which, in turn, requires the knowledge of the expected
demand per product in a placement.

FrAPP aims to define demand as realistic as possible while at the same time it
only uses data which is easily accessible. Naturally, there is always a trade-off
between those two factors, for example it seems logical that advertisement for
one product might decrease the demand of a substitute product, however, getting
concrete values for this effect is impossible. FrAPP’s demand function contains
the facing area, the space elasticity, the vertical position, the cross space location
effects and a trend. As a scaling the worst allocation demand is used. Here, the
facing area together with an approximated space elasticity and a location value
are used analogously to the demand factors in the related works. The location
value depends on the heights of the boards the product is allocated to, where the
eye level of an average sized human is considered the best height. FrAPP makes
the same assumption as Hwang et al. [10], namely that the staff pulls products
to the front after a customer purchased a product from the front. This ensures
that the shelf always looks fully stocked and therefore guarantees that the facing
area stays the same. However, instead of including only the cross space elasticity
into the demand function, as many researchers did, a new parameter called cross
space location elasticity, which also reflects the effects of better positioning of one

69

70 Chapter 7. Conclusion and Future Work

product on a substitute product, is used. Furthermore, trends can be defined to
insert expected gains or losses due to the weather, advertisement or the like. To
reflect the effect that some products are more popular than others even if placed
exactly the same way, most related works simply include a non-defined scale
factor. However, one cannot simply use the market share as a scale factor as
this would ignore the fact that more popular items tend to be placed more often
and in better positions than less popular ones. For this reason the scale factor
has to be determined fairly, meaning that it has to be neutral to the position and
amount of space assigned. FrAPP’s way to achieve such a fair scale parameter is
to compute the demand of a product in the worst possible placement, namely
being placed exactly once on the lowest board. This worst allocation demand can
be computed from the previous sales and previous placement and therefore even
includes regional differences.

The overall profit, defined as selling price subtracted by the purchasing costs
and the taxes, is maximized. Here, valid solutions have to fulfill the following
requirements: first, in order to avoid customer confusion due to random looking
shelves, all instances of a product must be connected. Secondly, the overall
demand of each product in the given replenishment interval must be lower than
the amount of products in the shelf behind the front to avoid decreases in demand
or even stock-outs. Thirdly, given minimum and maximum facing amounts must
be satisfied, for example, in order to allow users to fulfill contracts with the
manufacturer.

Since hyper-heuristics can adapt to changing problems such as the shelf space
allocation problem, the optimization follows Bai and Kendall’s [11] simulated
annealing based hyper-heuristic approach. However, as FrAPP’s optimization
model is way more complex than Bai and Kendall’s [11], some essential changes
had to be made: due to the strong restriction of product connectivity, less random
heuristics had to be used to prohibit solutions from being invalid all the time.
Furthermore, FrAPP does not use heuristics which become superfluous as the
temperature decreases since these only steal valuable computation time from
other heuristics. Therefore, six heuristics were implemented: three heuristics
swapping a facing with a direct neighbor, a neighbor on a horizontally or ver-
tically neighboring board, a heuristic swapping the whole allocation between
products, a heuristic distributing space equally between two products and lastly,
a heuristic reducing the amount of facings of a product to the minimum and
filling the gaps with the neighbors.

Additionally to a single threaded version of the simulated annealing based hyper-
heuristic three different concurrency modes were implemented. Furthermore,
found solutions are sorted horizontally by brand or type as this does not change
the evaluation value according to the demand function but improves customer
service dramatically.

In the end of the algorithm, a set of solutions is returned from which the user
can select his favorite. He can then choose to export a planogram as a web page

7.2. Future Work 71

which includes an image of the stocked shelf and two tables containing additional
information about the solution.

An evaluation was performed to see if the different parallelizations of the simu-
lated annealing based hyper-heuristic are able to find the optimum and which
algorithm is the best. For easy settings it showed that all concurrency modes
of the optimization algorithm are able to find the solution achieved by a brute
forcing algorithm in a fraction of the computation time. Upon a more complex
problem where brute forcing was unfeasible, the parallel runs mode outper-
formed the parallel heuristic and parallel neighbors mode if given little time,
however, with more computation time these two performed slightly better than
the parallel runs concurrency mode.

7.2 Future Work

As already argued in section 3.1.3 it seems logical that the cross space location
elasticity should exist. However, a field study proving its existence and validating
the used parameter estimations should be conducted.

Furthermore, interesting studies could be performed if more data for more prod-
ucts was at hand: one could compute the evaluation value of shelves in reality
and compare it to the real profit achieved by the shelf. This would determine to
which degree reality is reflected by FrAPP’s demand model.

Another interesting aspect would be to transfer the concept of location values
from vertical shelves to other forms. Freezers for example are often a simple
cube from the floor to hip-height which can be opened from the top. Normally
only the top side of freezers is transparent. On such kinds of product storage
new location values have to be determined as there is no eye level. One should
note that such freezers cannot be seen as upside-down shelves since the opaque
sides reduce the vision to products placed at the borders dramatically, especially
when the freezer is not completely stocked. Therefore, one could analyze which
products are seen from the most places in the most pleasant angles of views and
define location values. Naturally, one would also have to conduct a long-term
field study analogously to Drèze et al. [2] to see not only which positions are the
best but also how strong sales differ between these positions.

Lastly, one could extend the sorting which is performed after a solution is found
to also be able to sort by color, size or other aesthetic criteria. It would then also
be interesting to combine different sorting procedures like sorting by producer
and size.

72 Chapter 7. Conclusion and Future Work

Appendix A
An Exported Placement

73

74 Appendix A. An Exported Placement

Figure A.1: The planogram table corresponding to figure 5.6 ordered according
to product placements in the rendered image: part 1

75

Figure A.2: The planogram table corresponding to figure 5.6 ordered according
to product placements in the rendered image: part 2

76 Appendix A. An Exported Placement

Figure A.3: The planogram table corresponding to figure 5.6 ordered according
to product placements in the rendered image: part 3

Figure A.4: The planogram table corresponding to figure 5.6 in the order used by
Globus: part 1

77

Figure A.5: The planogram table corresponding to figure 5.6 in the order used by
Globus: part 2

78 Appendix A. An Exported Placement

Bibliography

[1] MURRAY, Chase C. ; TALUKDAR, Debabrata ; GOSAVI, Abhijit: Joint Opti-
mization of Product Price, Display Orientation and Shelf-Space Allocation
in Retail Category Management. In: Journal of Retailing 86 (2010), Nr. 2, 125-
136. http://dx.doi.org/10.1016/j.jretai.2010.02.008. – DOI
10.1016/j.jretai.2010.02.008. – ISSN 0022–4359. – Special Issue: Modeling
Retail Phenomena

[2] DRÈZE, Xavier ; HOCH, Stephen J. ; PURK, Mary E.: Shelf management and
space elasticity. In: Journal of Retailing 70 (1994), Nr. 4, 301 - 326. http://
dx.doi.org/10.1016/0022-4359(94)90002-7. – DOI 10.1016/0022–
4359(94)90002–7. – ISSN 0022–4359

[3] ANDERSON, E. E. ; AMATO, H. N.: A mathematical model for simultaneously
determining the optimal brand-collection and display-area allocation. In:
Operations Research 22 (1973), Nr. 1, S. 13 – 21

[4] Oxford Dictionary on Planogram. http://www.oxforddictionaries.
com/definition/english/planogram, . – Accessed: 2014-02-11

[5] CURHAN, Ronald C.: Shelf Space Allocation and Profit Maximization in
Mass Retailing. In: Journal of Marketing 37 (1973), Nr. 3, pp. 54-60. http:
//www.jstor.org/stable/1249947. – ISSN 00222429

[6] HARIGA, Moncer A. ; AL-AHMARI, Abdulrahman ; MOHAMED, Abdel-
Rahman A.: A joint optimisation model for inventory replenish-
ment, product assortment, shelf space and display area allocation de-
cisions. In: European Journal of Operational Research 181 (2007), Au-
gust, Nr. 1, 239-251. http://ideas.repec.org/a/eee/ejores/
v181y2007i1p239-251.html

[7] REYES, Pedro M. ; FRAZIER, Gregory V.: Goal programming model for
grocery shelf space allocation. In: European Journal of Operational Research 181
(2007), Nr. 2, 634-644. http://EconPapers.repec.org/RePEc:eee:
ejores:v:181:y:2007:i:2:p:634-644

[8] DESMET, Pierre ; RENAUDIN, Valérie: Estimation of product category sales
responsiveness to allocated shelf space. In: International Journal of Research in
Marketing 15 (1998), Nr. 5, S. 443–457

79

http://dx.doi.org/10.1016/j.jretai.2010.02.008
http://dx.doi.org/10.1016/0022-4359(94)90002-7
http://dx.doi.org/10.1016/0022-4359(94)90002-7
http://www.oxforddictionaries.com/definition/english/planogram
http://www.oxforddictionaries.com/definition/english/planogram
http://www.jstor.org/stable/1249947
http://www.jstor.org/stable/1249947
http://ideas.repec.org/a/eee/ejores/v181y2007i1p239-251.html
http://ideas.repec.org/a/eee/ejores/v181y2007i1p239-251.html
http://EconPapers.repec.org/RePEc:eee:ejores:v:181:y:2007:i:2:p:634-644
http://EconPapers.repec.org/RePEc:eee:ejores:v:181:y:2007:i:2:p:634-644

[9] COSKUN, Mehmet E.: Shelf Space Allocation: A Critical Review and a
Model with Price Changes and Adjustable Shelf Heights. In: Open Access
Dissertations and Theses (2012), January, S. 185–195

[10] HWANG, Hark ; CHOI, Bum ; LEE, Min-Jin: A model for shelf space al-
location and inventory control considering location and inventory level
effects on demand. In: International Journal of Production Economics 97 (2005),
August, Nr. 2, 185-195. http://ideas.repec.org/a/eee/proeco/
v97y2005i2p185-195.html

[11] BAI, Ruibin ; KENDALL, Graham: An investigation of automated
planograms using a simulated annealing based hyper-heuristics. (2005), S.
87–108

[12] YANG, Ming-Hsien: An efficient algorithm to allocate shelf
space. In: European Journal of Operational Research 131 (2001), Nr.
1, 107 - 118. http://dx.doi.org/http://dx.doi.org/10.1016/
S0377-2217(99)00448-8. – DOI http://dx.doi.org/10.1016/S0377–
2217(99)00448–8. – ISSN 0377–2217

[13] COX, K.: The Effect of Shelf Space Upon Sales of Branded Products. In:
Journal of Marketing Research 7 (1970), Nr. 1

[14] ZUFRYDEN, F. S.: A dynamic programming approach for product selection
and supermarket shelf-space allocation. In: The Journal of the Operational
Research Society 37 (1986), Nr. 4, S. 413–422

[15] RUSSELL, RobertA. ; URBAN, TimothyL.: The location and allocation
of products and product families on retail shelves. In: Annals of Opera-
tions Research 179 (2010), Nr. 1, 131-147. http://dx.doi.org/10.1007/
s10479-008-0450-y. – DOI 10.1007/s10479–008–0450–y. – ISSN 0254–
5330

[16] BORIN, Norm ; FARRIS, Paul W. ; FREELAND, James R.: A Model for
Determining Retail Product Category Assortment and Shelf Space Allo-
cation. In: Decision Sciences 25 (1994), Nr. 3, 359–384. http://dx.doi.
org/10.1111/j.1540-5915.1994.tb00809.x. – DOI 10.1111/j.1540–
5915.1994.tb00809.x. – ISSN 1540–5915

[17] URBAN, Timothy L.: An inventory-theoretic approach to product assort-
ment and shelf-space allocation. In: Journal of Retailing 74 (1998), Nr. 1, 15-
35. http://dx.doi.org/10.1016/S0022-4359(99)80086-4. – DOI
10.1016/S0022–4359(99)80086–4. – ISSN 0022–4359

[18] BAI, Ruibin ; KENDALL, Graham: A Model for Fresh Produce Shelf-Space Al-
location and Inventory Management with Freshness-Condition-Dependent
Demand. In: INFORMS J. on Computing 20 (2008), Januar, Nr. 1, 78–85.
http://dx.doi.org/10.1287/ijoc.1070.0219. – DOI 10.1287/i-
joc.1070.0219. – ISSN 1526–5528

80

http://ideas.repec.org/a/eee/proeco/v97y2005i2p185-195.html
http://ideas.repec.org/a/eee/proeco/v97y2005i2p185-195.html
http://dx.doi.org/http://dx.doi.org/10.1016/S0377-2217(99)00448-8
http://dx.doi.org/http://dx.doi.org/10.1016/S0377-2217(99)00448-8
http://dx.doi.org/10.1007/s10479-008-0450-y
http://dx.doi.org/10.1007/s10479-008-0450-y
http://dx.doi.org/10.1111/j.1540-5915.1994.tb00809.x
http://dx.doi.org/10.1111/j.1540-5915.1994.tb00809.x
http://dx.doi.org/10.1016/S0022-4359(99)80086-4
http://dx.doi.org/10.1287/ijoc.1070.0219

[19] URBAN, Glen L.: A Mathematical Modeling Approach to Product Line
Decisions. In: Journal of Marketing Research 6 (1969), Nr. 1, S. 40–47

[20] BUSSIECK, Michael R. ; PRUESSNER, Armin: Mixed-integer nonlinear pro-
gramming. In: SIAG/OPT Newsletter: Views & News 14 (2003), Nr. 1, S.
19–22

[21] BONAMI, Pierre ; LEE, Jon ; LEYFFER, Sven ; WÄCHTER, Andreas: More
branch-and-bound experiments in convex nonlinear integer programming.
In: Preprint ANL/MCS-P1949-0911, Argonne National Laboratory, Mathematics
and Computer Science Division (2011)

[22] BONAMI, Pierre ; BIEGLER, Lorenz T. ; CONN, Andrew R. ; CORNUÉJOLS,
Gérard ; GROSSMANN, Ignacio E. ; LAIRD, Carl D. ; LEE, Jon ; LODI, Andrea
; MARGOT, François ; SAWAYA, Nicolas: An algorithmic framework for
convex mixed integer nonlinear programs. In: Discrete Optimization 5 (2008),
Mai, Nr. 2, 186–204. http://dx.doi.org/10.1016/j.disopt.2006.
10.011. – DOI 10.1016/j.disopt.2006.10.011

[23] BONAMI, Pierre ; LEE, Jon: BONMIN Users’ Manual (Version 1.7). (2013).
https://projects.coin-or.org/Bonmin/browser/stable/1.
7/Bonmin/doc/BONMIN_UsersManual.pdf?format=raw

[24] WOLPERT, D.H. ; MACREADY, W.G.: No free lunch theorems for op-
timization. In: Evolutionary Computation, IEEE Transactions on 1 (1997),
Nr. 1, S. 67–82. http://dx.doi.org/10.1109/4235.585893. – DOI
10.1109/4235.585893. – ISSN 1089–778X

[25] BURKE, Edmund ; KENDALL, Graham ; NEWALL, Jim ; HART, Emma ; ROSS,
Peter ; SCHULENBURG, Sonia: Hyper-Heuristics: An Emerging Direction
in Modern Search Technology. 57 (2003), 457-474. http://dx.doi.org/
10.1007/0-306-48056-5_16. – DOI 10.1007/0–306–48056–5_16. ISBN
978–1–4020–7263–5

[26] LUNDY, M. ; MEES, A.: Convergence of an annealing algorithm. In: Mathe-
matical Programming 34 (1986), Nr. 1, 111-124. http://dx.doi.org/10.
1007/BF01582166. – DOI 10.1007/BF01582166. – ISSN 0025–5610

[27] CAMPO, Katia ; GIJSBRECHTS, Els ; NISOL, Patricia: The impact of stock-outs
on whether, how much and what to buy. (2000)

[28] SPASSOVA, Lübomira ; SCHÖNING, Johannes ; KAHL, Gerrit ; KRÜGER,
Antonio: Innovative Retail Laboratory. In: Roots for the Future of Ambient In-
telligence. European Conference on Ambient Intelligence (AmI-09), 3rd, November
18-21, Salzburg, Austria, o.A., 2009. – ISBN 978–3–902737–00–7

[29] STATISTISCHES BUNDESAMT: Mikrozensus - Fragen zur Gesundheit -
Körpermaße der Bevölkerung. (2009). https://www.destatis.de/DE/

81

http://dx.doi.org/10.1016/j.disopt.2006.10.011
http://dx.doi.org/10.1016/j.disopt.2006.10.011
https://projects.coin-or.org/Bonmin/browser/stable/1.7/Bonmin/doc/BONMIN_UsersManual.pdf?format=raw
https://projects.coin-or.org/Bonmin/browser/stable/1.7/Bonmin/doc/BONMIN_UsersManual.pdf?format=raw
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1007/0-306-48056-5_16
http://dx.doi.org/10.1007/0-306-48056-5_16
http://dx.doi.org/10.1007/BF01582166
http://dx.doi.org/10.1007/BF01582166
https://www.destatis.de/DE/Publikationen/Thematisch/Gesundheit/Gesundheitszustand/Koerpermasse5239003099004.pdf?__blob=publicationFile
https://www.destatis.de/DE/Publikationen/Thematisch/Gesundheit/Gesundheitszustand/Koerpermasse5239003099004.pdf?__blob=publicationFile

Publikationen/Thematisch/Gesundheit/Gesundheitszustand/
Koerpermasse5239003099004.pdf?__blob=publicationFile

[30] EISEND, Martin: Shelf space elasticity: A meta-analysis. In:
Journal of Retailing (2013), Nr. 0, -. http://dx.doi.org/http:
//dx.doi.org/10.1016/j.jretai.2013.03.003. – DOI
http://dx.doi.org/10.1016/j.jretai.2013.03.003. – ISSN 0022–4359

82

https://www.destatis.de/DE/Publikationen/Thematisch/Gesundheit/Gesundheitszustand/Koerpermasse5239003099004.pdf?__blob=publicationFile
https://www.destatis.de/DE/Publikationen/Thematisch/Gesundheit/Gesundheitszustand/Koerpermasse5239003099004.pdf?__blob=publicationFile
https://www.destatis.de/DE/Publikationen/Thematisch/Gesundheit/Gesundheitszustand/Koerpermasse5239003099004.pdf?__blob=publicationFile
http://dx.doi.org/http://dx.doi.org/10.1016/j.jretai.2013.03.003
http://dx.doi.org/http://dx.doi.org/10.1016/j.jretai.2013.03.003

	 Introduction
	Motivation
	Terminology

	 Related Work
	Optimization Models
	General Approach
	A Simple Demand Model Using Space Only
	Considering Location and Inventory Level Effects of Demand
	Joint Optimization of Price, Orientation and Shelf-Space Allocation
	Further Ideas

	Solving Procedures
	MINLP-Solver
	Dynamic Programming
	Genetic Algorithm
	Simulated Annealing Based Hyper-Heuristic

	Comparison with FrAPP

	 Mathematical Model
	Demand Function
	Demand Parameters
	Formalization
	Improved Demand Function

	Optimization Model
	Profit
	Requirements
	Formalization

	 Optimization Algorithm
	General Algorithm
	Finding an Initial Solution
	Heuristics
	Satisfying Requirements
	Facing Bounds
	Prohibit Stock-Outs
	Product Connectivity

	Sorting
	Concurrency Modes

	 Implementation
	Implementation Details
	Parameter Estimation
	Program Interaction
	GUI
	Export

	 Evaluation
	Overview and Setup
	Problem Instance 1
	Problem Instance 2
	Problem Instance 3
	Conclusion

	 Conclusion and Future Work
	Summary and Conclusion
	Future Work

	 An Exported Placement
	Bibliography

